Skip to main content

Advertisement

Log in

Evaluation of genetic diversity of human immunodeficiency virus type 1nef gene associated with vertical transmission

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Thenef gene is conserved among members of human and simian immunodeficiency viruses and may play an important role in viral pathogenesis. To determine the evolutionary dynamics and conservation of functionality of the human immunodeficiency virus type 1 (HIV-1)nef gene during maternal-fetal transmission, we analyzednef sequences from seven mother-infant pairs following perinatal transmission, including a mother with infected twin infants. Thenef open reading frame was maintained in mother-infant isolates with a frequency of 86.2% following vertical transmission. While there was a low degree of viral heterogeneity and estimates of genetic diversity and high population growth rates ofnef sequences from mother-infant isolates, the infants'nef sequences were slightly higher with respect to these parameters compared with the mothers' sequences. Both the mothers' and infants'nef sequences were under positive selection pressure, as determined by a new method of Nielsen and Yang [Genetics 148:929–936;1998]. Based on genetic distance and phylogenetic parameters, the epidemiologically linkednef sequences from mother-infant pairs were closer to each other compared with epidemiologically unlinked sequences from individuals. The functional domains essential for Nef activity, including membrane binding, CD4 and MHC-I downmodulation, T cell activation and interaction with factors of the cellular protein trafficking machinery, were conserved in most of the sequences from mother-infant pairs. The maintenance of intactnef open reading frames with conserved functional domains and a low degree of genetic variability following vertical transmission supports the notion thatnef plays an important role in HIV-1 infection and replication in mothers and their perinatally infected infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad N. Maternal-fetal transmission of human immunodeficiency virus. J Biomed Sci 3:238–250;1996.

    Article  PubMed  Google Scholar 

  2. Ahmad N. Molecular mechanisms of human immunodeficiency virus type 1 mother-infant transmission. Adv Pharmacol 49:387–415;2000.

    PubMed  Google Scholar 

  3. Ahmad N, Baroudy BM, Baker RC, Chappey C. Genetic analysis of human immunodeficiency virus type 1 envelope V3 region isolates from mothers and infants after perinatal transmission. J Virol 69:1001–1012;1995.

    PubMed  Google Scholar 

  4. Ahmad N, Venkatesan S. Nef protein of HIV-1 is a transcriptional repressor of HIV-1 LTR. Science 241:1481–1485:1985.

    Google Scholar 

  5. Aiken C, Konner J, Landau NR, Lenburg ME, Trono D. Nef induces CD4 endocytosis: Requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 76:853–864;1994.

    Article  PubMed  Google Scholar 

  6. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Contrib 19:716–723;1974.

    Article  Google Scholar 

  7. Akari H, Arold S, Fukumori T, Okazaki T, Strebel K, Adachi A. Nef-induced major histocompatibility complex class I down-regulation is functionally dissociated from its virion incorporation, enhancement of viral infectivity, and CD4 down-regulation. J Virol 74:2907–2912;2000.

    Article  PubMed  Google Scholar 

  8. Aldrovandi GM, Gao L, Bristol G, Zack JA. Regions of human immunodeficiency virus type 1 nef required for function in vivo. J Virol 72:7032–7039;1998.

    PubMed  Google Scholar 

  9. Baba TW, Liska V, Khimani AH, Ray NB, Dailey PJ, Penninck D, Bronson R, Greene MF, McClure HM, Martin LN, Ruprecht RM. Live attenuated, multiply deleted simian immunodeficiency virus causes AIDS in infant and adult macaques. Nat Med 5:194–203;1999.

    Article  PubMed  Google Scholar 

  10. Baur AS, Sass G, Laffert B, Willbold D, Cheng-Mayer C, Peterlin BM. The N-terminus of Nef from HIV-1/SIV associates with a protein complex containing Lck and a serine kinase. Immunity 6:283–291;1997.

    Article  PubMed  Google Scholar 

  11. Bresnahan PA, Yonemoto W, Ferrell S, Williams-Herman D, Geleziunas R, Greene WC. A dileucine motif in HIV-1 Nef acts as an internalization signal for CD4 downregulation and binds the AP-1 clathrin adaptor. Curr Biol 8:1235–1238;1998.

    Article  PubMed  Google Scholar 

  12. Centers for Disease Control and Prevention Classification system for human immunodeficiency virus (HIV) in children under 13 years of age. MMWR Morb Mortal Wkly Rep 36:225–236;1987.

    Google Scholar 

  13. Cheng-Mayer C, Lannello P, Shaw K, Luciw PA, Levy JA. Differential effects of nef on HIV replication: Implication for viral pathogenesis in the host. Science 246:1629–1632;1989.

    PubMed  Google Scholar 

  14. Colgrove RC, Pitt J, Chung PH, Wells SL, Japour AJ. Selective vertical transmission of HIV-1 antiretroviral resistance mutations. AIDS 12:2281–2288;1998.

    Article  PubMed  Google Scholar 

  15. Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391:397–401;1998.

    Article  PubMed  Google Scholar 

  16. Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford M, Hooker M, McPhee DA, Greenway AL, Ellet A, Chatfield C, et al. Genomic structure of an attenuated quasi species of HIV-1 from blood transfusion donor recipients. Science 270:988–991;1995.

    Google Scholar 

  17. Dickover RE, Garratty EM, Plaeger S, Bryson YJ. Perinatal transmission of major, minor, and multiple maternal human immunodeficiency virus type 1 variants in utero and intrapartum. J Virol 75:2194–2203;2001.

    Article  PubMed  Google Scholar 

  18. Fackler OT, d'Aloja P, Baur AS, Federico M, Peterlin BM. Nef from human immunodeficiency virus type 1(F12) inhibits viral production and infectivity. J Virol 75:6601–6608;2001.

    Article  PubMed  Google Scholar 

  19. Grzesiek S, Stahl SJ, Wingfield PT, Bax A. The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. Biochemistry 35:10256–10261;1996.

    Article  PubMed  Google Scholar 

  20. Hahn T, Ahmad N. Genetic characterization of HIV type 1 gag p17 matrix genes in isolates from infected mothers lacking perinatal transmission. AIDS Res Hum Retroviruses 17:1673–1680;2001.

    Article  PubMed  Google Scholar 

  21. Hahn T, Matala E, Chappey C, Ahmad N. Characterization of mother-infant HIV type 1 gag p17 sequences associated with perinatal transmission. AIDS Res Hum Retroviruses 15:875–888;1999.

    Article  PubMed  Google Scholar 

  22. Huang Y, Zhang L, Ho DD. Characterization of nef sequences in long-term survivors of human immunodeficiency virus type 1 infection. J Virol 69:93–100;1995.

    PubMed  Google Scholar 

  23. Huelsenbeck JP, Crandall KA. Phylogeny estimation and hypothesis testing using maximum likelihood. Annu Rev Ecol Syst 28:437–466;1997.

    Article  Google Scholar 

  24. Hughes AL, Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170;1988.

    Article  PubMed  Google Scholar 

  25. Husain M, Hahn T, Yedavalli VR, Ahmad N. Characterization of HIV type 1 tat sequences associated with perinatal transmission. AIDS Res Hum Retroviruses 17:765–773;2001.

    Article  PubMed  Google Scholar 

  26. Iafrate AJ, Bronson S, Skowronski J. Separable functions of Nef disrupt two aspects of T cell receptor machinery: CD4 expression and CD3 signaling. EMBO J 16:673–684;1997.

    PubMed  Google Scholar 

  27. Ina Y. New methods for estimating the numbers of synonymous and nonsynonymous substitutions. J Mol Evol 40:190–226;1995.

    PubMed  Google Scholar 

  28. Kestler HW III, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65:651–662;1991.

    Article  PubMed  Google Scholar 

  29. Kim YH, Chang SH, Kwon JH, Rhee SS. HIV-1 Nef plays an essential role in two independent processes in CD4 down-regulation: Dissociation of the CD4-p56(lck) complex and targeting of CD4 to lysosomes. Virology 257:208–219;1999.

    Article  PubMed  Google Scholar 

  30. Korber BT, Walker BD, Brander C, Koup R, Moore JP, Hayes BF, D'Souza PM, Myers G. In: HIV Molecular Immunology Database, Los Alamos National Laboratory, 1996.

  31. Kuiken CL, Foley B, Guzman E, Korber BT, Crandall KA. In: The Evolution of HIV. Baltimore, The John Hopkins University Press, 432–468;1999.

    Google Scholar 

  32. Lama J, Mangasarian A, Trono D. Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. Curr Biol 9:622–631;1999.

    Article  PubMed  Google Scholar 

  33. Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 85:931–942;1996.

    Article  PubMed  Google Scholar 

  34. Le Gall S, Erdtmann L, Benichou S, Berlioz-Torrent C, Liu L, Benarous R, Heard JM, Schwartz O. Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 8:483–495;1998.

    PubMed  Google Scholar 

  35. Liu SL, Schacker T, Musey L, Shriner D, McElrath MJ, Corey L, Mullins JI. Divergent patterns of progression to AIDS after infection from the same source: Human immunodeficiency virus type 1 evolution and antiviral responses. J Virol 71:4284–4295;1997.

    PubMed  Google Scholar 

  36. Mangasarian A, Foti M, Aiken C, Chin D, Carpentier JL, Trono D. The HIV-1 Nef protein acts as a connector with sorting pathways in the Golgi and at the plasma membrane. Immunity 6:67–77;1997.

    Article  PubMed  Google Scholar 

  37. Mangasarian A, Piguet V, Wang JK, Chen YL, Trono D. Nef-induced CD4 and major histocompatibility complex class I (MHC-I) down-regulation are governed by distinct determinants: N-terminal alpha helix and proline repeat of Nef selectively regulate MHC-I trafficking. J Virol 73:1964–1973;1999.

    PubMed  Google Scholar 

  38. Mariani R, Kirchhoff F, Greenough TC, Sullivan JL, Desrosiers RC, Skowronski J. High frequency of defective nef alleles in a long-term survivor with nonprogressive human immunodeficiency virus type 1 infection. J Virol 70:7752–7764;1996.

    PubMed  Google Scholar 

  39. Matala E, Hahn T, Yedavalli VR, Ahmad N. Biological characterization of HIV type 1 envelope V3 regions from mothers and infants associated with perinatal transmission. AIDS Res Hum Retroviruses 17:1725–1735;2001.

    Article  PubMed  Google Scholar 

  40. Mayaux M-J, Blanche S, Rouzioux C, Le Chenadec J, Chambrin V, Firtion G, Allemon M-C, Vilmer E, Vigneron NC, Tricoire J, Guillot F, Courpotin C. Maternal factors associated with perinatal HIV-1 transmission: The French Cohort Study: 7 years of follow-up observation. The French Pediatric HIV Infection Study Group. J Acquir Immune Defic Syndr Hum Retrovirol 8:188–194;1995.

    PubMed  Google Scholar 

  41. Mulder-Kampinga GA, Simonon GA, Kuiken CL, Dekker J, Scherpbier HJ, van de Perre P, Boer K, Goudsmit J. Similarity inenv andgag genes between genomic RNAs of human immunodeficiency virus type 1 (HIV-1) from mothers and infants is unrelated to time of HIV-1 RNA positivity in the child. J Virol 69:2285–2296;1995.

    PubMed  Google Scholar 

  42. Myers G, Korber B, Foley B, Jeang K-T, Mellors JW, Wain-Hobson S: Theoretical Biology. Los Alamos, Los Alamos National Laboratory, 1996.

    Google Scholar 

  43. Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and non-synonymous nucleotide substitutions. Mol Biol Evol 3:418–426;1986.

    PubMed  Google Scholar 

  44. Neiderman TM, Hastings WR, Ratner L. Human immunodeficiency virus type 1 negative factor is a transcriptional silencer. Proc Natl Acad Sci USA 86:1128–1132;1989.

    PubMed  Google Scholar 

  45. Nielsen R, Yang Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936;1998.

    PubMed  Google Scholar 

  46. Piguet V, Gu F, Foti M, Demaurex N, Gruenberg J, Carpentier JL, Trono D. Nef-induced CD4 degradation: A diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. Cell 97:63–73;1999.

    Article  PubMed  Google Scholar 

  47. Pitt J, Brambilla D, Reichelderfer P, Landay A, McIntosh K, Burns D, Hillyer GV, Mendez H, Fowler MG. Maternal immunologic and virologic risk factors for infant human immunodeficiency virus type 1 infection: Findings from the Women and Infants Transmission Study. J Infect Dis 175:567–575;1997.

    PubMed  Google Scholar 

  48. Posada D, Crandall KA. MODELTEST: Testing the model of DNA substitution. Bioinformatics 14:817–818;1998.

    Article  PubMed  Google Scholar 

  49. Price DA, Goulder PJ, Klenerman P, Sewell AK, Easterbrook PJ, Troop M, Bangham CR, Phillips RE. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc Natl Acad Sci USA 94:1890–1895;1997.

    PubMed  Google Scholar 

  50. Ross TM, Oran AE, Cullen BR. Inhibition of HIV-1 progeny virion release by cell-surface CD4 is relieved by expression of the viral Nef protein. Curr Biol 9:613–621;1999.

    Article  PubMed  Google Scholar 

  51. Saksela K, Cheng G, Baltimore D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J 14:484–491;1995.

    PubMed  Google Scholar 

  52. Salvatori F, Scarlatti G. HIV type 1 chemokine receptor usage in mother-to-child transmission. AIDS Res Hum Retroviruses 17:925–935;2001.

    Article  PubMed  Google Scholar 

  53. Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 2:338–342;1996.

    Article  PubMed  Google Scholar 

  54. Shaheduzzaman S, Krishnan V, Petrovic A, Bittner M, Meltzer P, Trent J, Venkatesan S, Zeichner S. Effects of HIV-1 Nef on cellular gene expression profiles. J Biomed Sci 9:82–96;2002.

    PubMed  Google Scholar 

  55. Sharp PM. In search of molecular darwinism. Nature 385:111–112;1997.

    Article  PubMed  Google Scholar 

  56. Sperling RS, Shapiro DE, Coombs RW. Maternal viral load, zidovudine treatment, and the risk of transmission of human immunodeficiency virus type 1 from mother to infant. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med 335:1621–1629;1996.

    Article  PubMed  Google Scholar 

  57. Swingler S, Mann A, Jacque J, Brichacek B, Sasseville VG, Williams K, Lackner AA, Janoff EN, Wang R, Fisher D, Stevenson M. HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med 5:997–103;1999.

    PubMed  Google Scholar 

  58. Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony and Other Methods. Sunderland, Sinauer Associates, 1999.

    Google Scholar 

  59. The European Collaborative Study Group, Newell ML, Dunn DT, Peckham CS. Semprini A.E, Pardi G. Vertical transmission of HIV-1: Maternal immune status and obstetric factors. The European Collaborative Study. Aids 10:1675–1681;1996.

    PubMed  Google Scholar 

  60. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882;1997.

    Article  Google Scholar 

  61. Vasco DA, Crandall KA, Fu Y-X, Rodrigo AG, Learn GH Jr. In: Computational and Evolutionary Analysis of HIV Molecular Sequences. Dordrecht, Kluwer Academic, 173–216;2001.

    Google Scholar 

  62. Welker R, Harris M, Cardel B, Krausslich HG. Virion incorporation of human immunodeficiency virus type 1 Nef is mediated by a bipartite membrane-targeting signal: Analysis of its role in enhancement of viral infectivity. J Virol 72:8833–8840;1998.

    PubMed  Google Scholar 

  63. Wilson CC, Brown RC, Korber BT, Wilkes BM, Ruhl DJ, Sakamoto D, Kunstman K, Luzuriaga K, Hanson IC, Widmayer SM, Wiznia A, Clapp S, Ammann AJ, Koup RA, Wolinsky SM, Walker BD. Frequent detection of escape from cytotoxic T-lymphocyte recognition in perinatal human immunodeficiency virus (HIV) type 1 transmission: The ariel project for the prevention of transmission of HIV from mother to infant. J Virol 73:3975–3985;1999.

    PubMed  Google Scholar 

  64. Wolfs TFW, Zwart G, Bakker M, Goudsmit J. HIV-1 genomic RNA diversification following sexual and parenteral virus transmission. Virology 189:103–110;1992.

    PubMed  Google Scholar 

  65. Wolinsky S, Wike CM, Korber BTM, Hutto C, Parks WP, Rosenblum LL, Kunstman KJ, Furtado MR, Munzo IL. Selective transmission of human immunodeficiency virus type-1 variants from mother to infants. Science 255:1134–1137;1992.

    PubMed  Google Scholar 

  66. Yang Z: Phylogenetic Analysis by Maximum Likelihood (PAML), version 3.0. London, University College London, 2000 (http://abacus.gene.ucl.ac.uk/software/paml.html).

    Google Scholar 

  67. Yedavalli VRK, Ahmad N. Low conservation of HIV-1 type 1 vif and vpr genes correlates with lack of vertical transmission. AIDS Res Hum Retroviruses 17:911–923;2001.

    PubMed  Google Scholar 

  68. Yedavalli VRK, Chappey C, Ahmad N. Maintenance of an intact human immunodeficiency virus type 1vpr gene following mother-to-infant transmission. J Virol 72:6937–6943;1998.

    PubMed  Google Scholar 

  69. Yedavalli VRK, Chappey C, Matala E, Ahmad N. Conservation of an intactvif gene of human immunodeficiency virus type 1 during maternal-fetal transmission. J Virol 72:1092–1102;1998.

    PubMed  Google Scholar 

  70. Yusim K, Kesmir C, Gaschen B, Addo MM, Altfeld M, Brunak S, Chigaev A, Detours V, Korber BT. Clustering patterns of cytotoxic T-lymphocyte epitopes in human immunodeficiency virus type 1 (HIV-1) proteins reveal imprints of immune evasion on HIV-1 global variation. J Virol 76:8757–8768;2002.

    Article  PubMed  Google Scholar 

  71. Zanotto PM, Kallas EG, de Souza RF, Holmes EC. Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics 153:1077–1089;1999.

    PubMed  Google Scholar 

  72. Zhu T, Mo H, Wang N, Nam DS, Cao Y, Koup RA, Ho DD. Genotypic and phenotypic characterization of HIV-1 in patients with primary infection. Science 261:1179–1181;1993.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, T., Ramakrishnan, R. & Ahmad, N. Evaluation of genetic diversity of human immunodeficiency virus type 1nef gene associated with vertical transmission. J Biomed Sci 10, 436–450 (2003). https://doi.org/10.1007/BF02256435

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256435

Key Words

Navigation