Journal of Biomedical Science

, Volume 6, Issue 1, pp 64–70 | Cite as

Expression of foreign antigens on the surface ofEscherichia coli by fusion to the outer membrane protein TraT

  • Hsin-Hou Chang
  • Shih Yi Sheu
  • Szecheng J. Lo
Original Paper


ThetraT gene is one of the F factor transfer genes and encodes an outer membrane protein which is involved in interactions between anEscherichia coli and its surroundings. This protein was altered so as to permit the expression of foreign proteins on the outer membrane ofE. coli in this study. A 729-bp DNA fragment, including the leader and entire structural gene sequence oftraT, was amplified and obtained by PCR. This sequence was then subcloned downstream of thetac promoter of pDR540, resulting in a TraT expression vector, pT2. Here, we report that the expression of TraT protein, fused either with a partial pre-S antigen of hepatitis B virus (60 and 98 amino acids, respectively) or with the snake venom rhodostomin (72 amino acids), was successfully achieved on the outer membrane ofE. coli, using the pT2 plasmid. This result was demonstrated using dot blot and immunofluorescence analysis. This finding supports the notion that the pT2 plasmid can be used as anE. coli display system. This system can detect a foreign peptide of about 100 amino acid residues in length on the bacterial surface.

Key Words

Bacterial display TraT lipoprotein Outer membrane protein Rhodostomin Hepatitis B virus pre-S1 antigen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achtman M, Kennedy N, Skurray R. Cell-Cell interactions in conjugatingEscherichia coli: Role of TraT protein in surface exclusion. Proc Natl Acad Sci USA 74:5104–5108;1977.PubMedGoogle Scholar
  2. 2.
    Adler M, Lazarus RA, Dennis MS, Wagner G. Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science 253:445–448;1991.Google Scholar
  3. 3.
    Agterberg M, Adriaanse H, Tommassen J. Outer-membrane PhoE protein ofEscherichia coli K-12 as an exposure vector: Possibilities and limitations. Gene 59:145–150;1987.CrossRefPubMedGoogle Scholar
  4. 4.
    Aguero ME, Aron L, Deluca AG, Timmis KN, Cabello FC. A plasmid-encoded outer membrane protein, TraT, enhances resistance ofEscherichia coli to phagocytosis. Infect Immun 46:740–746;1984.PubMedGoogle Scholar
  5. 5.
    Bradbury A. Diversity by design. Trends Biotechnol 6:99–102;1998.CrossRefGoogle Scholar
  6. 6.
    Chang HH, Hu ST, Huand TF, Chen SH, Lee YHW, Lo SJ. Rhodostomin, an RGD-containing peptide expressed from a synthetic gene inEscherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun 190:242–249;1993.CrossRefPubMedGoogle Scholar
  7. 7.
    Chang HH. Using TraT lipoprotein as a vehicle to express foreign proteins onEscherichia coli surface. PhD, Diss, Taipei; 1996.Google Scholar
  8. 8.
    Chang HH, Tsai WJ, Lo SJ. Glutathione 3 S-transferase-rhodostomin fusion protein inhibits platelet aggregation and induces platelet shape change. Toxicon 35:195–204;1997.CrossRefPubMedGoogle Scholar
  9. 9.
    Chang HH, Chang CP, Chang JC, Dung SZ, Lo SJ. Application of recombinant rhodostomin in studying cell adhesion. J Biomed Sci 4:235–243;1997.CrossRefPubMedGoogle Scholar
  10. 10.
    Chang HH, Lo SJ. Full-spreading platelets induced by the recombinant rhodostomin are via binding to integrins and correlated FAK phosphorylation. Toxicon 36:1087–1099;1998.CrossRefPubMedGoogle Scholar
  11. 11.
    Charbit A, Molla A, Saurin W, Hofnung M. Versatility of a vector for expressing foreign polypeptides at the surface of Gram-negative bacteria. Gene 70:181–189;1988.CrossRefPubMedGoogle Scholar
  12. 12.
    Clackson T, Wells JA. In vitro selection from protein and peptide libraries. Trends Biotechnol 12:173–184;1994.CrossRefPubMedGoogle Scholar
  13. 13.
    Croft S, Walsh J, Lloyd W, Russell-Jones GJ. TraT: A powerful carrier molecule for the stimulation of immune responses to protein and peptide antigens. J Immunol 146:793–798;1991.PubMedGoogle Scholar
  14. 14.
    Dash S, Rao KV, Panda SK. Receptor for pre-S1 (21–47) component of hepatitis B virus on the liver cell: Role in virus cell interaction. J Med Virol 37:116–121;1992.PubMedGoogle Scholar
  15. 15.
    Fuchs P, Breitling F, Dubel S, Seehaus T, Little M. Targeting recombinant antibodies to the surface ofEscherichia coli: Fusion to a peptidoglycan associated lipoprotein. Biotechnology (NY) 9:1369–1372;1991.CrossRefPubMedGoogle Scholar
  16. 16.
    Georgiou G, Poetschke HL, Stathopoulos C, Francisco JA. Practical applications of engineering Gram-negative bacterial cell surfaces. Trends Biotechnol 11:6–10;1993.CrossRefPubMedGoogle Scholar
  17. 17.
    Harrison JL, Taylor IM, Platt K, O'Connor D. Surface exclusion specificity of the TraT lipoprotein is determined by single alterations in a five-amino-acid region of the protein. Mol Microbiol 6:2825–2832;1992.PubMedGoogle Scholar
  18. 18.
    Hedegaard L, Klemm P. Type 1 fimbriae ofEscherichia coli as carriers of heterologous antigenic sequences. Gene 85:115–124;1989.CrossRefPubMedGoogle Scholar
  19. 19.
    Isberg RR, Nhieu GTV. Two mammalian cell internalization strategies used by pathogenic bacteria. Annu Rev Genet 27:395–422;1994.CrossRefGoogle Scholar
  20. 20.
    Jalajakumari MB, Guidolon A, Bulrk HJ, Marruly PA, Ham LM, Hodgson ALM, Cheah KC, Skurray RA. Surface exclusion genestraN andtraT of the F sex factor ofEscherichia coli K-12. J Mol Biol 198:1–11;1986.CrossRefGoogle Scholar
  21. 21.
    Kay BK, Winter J, McCatferty J. Phage display of peptides and proteins: A laboratory manual. San Diego, Academic Press; 1996.Google Scholar
  22. 22.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685;1970.CrossRefPubMedGoogle Scholar
  23. 23.
    Little M, Funchs P, Breitling F, Dubel S. Bacterial surface presentation of proteins and peptides: An alternative to phage technology? Trends Biotechnol 11:3–5;1993.CrossRefPubMedGoogle Scholar
  24. 24.
    Lu Z, Murray KS, Cleave VV, LaVallie ER, Stahl ML, McCoy JM. Expression of thioredoxin random peptide libraries on theEscherichia coli cell surface as functional fusion to flagellin: A system designed for exploring protein-protein interactions. Biotechnology (NY) 13:366–372;1995.CrossRefPubMedGoogle Scholar
  25. 25.
    Manning PA, Beutin L, Achtman M. Outer membrane ofEscherichia coli: Properties of the F sex factor TraT protein which is involved in surface exclusion. J Bacteriol 142:285–294;1980.PubMedGoogle Scholar
  26. 26.
    Moll A, Manning PA, Timmis KN. Plasmid-determined resistance to serum bactericidal activity: A major outer membrane protein, thetraT gene product, is responsible for plasmid-specified serum resistance inEscherichia coli. Infect Immun 28:359–367;1980.PubMedGoogle Scholar
  27. 27.
    Newton SM, Jacob CO, Stocker BA. Immune response to cholera toxin epitope inserted in Salmonella flagellin. Science 244:70–72;1989.PubMedGoogle Scholar
  28. 28.
    Ogata RT, Winters C, Levine RP. Nucleotide sequence analysis of the complement resistance gene from plasmid R100. J Bacteriol 151:819–827;1982.PubMedGoogle Scholar
  29. 29.
    Osborn MJ, Wu HCP. Proteins of the outer membrane of Gram-negative bacteria. Annu Rev Microbiol 34:369–422;1980.CrossRefPubMedGoogle Scholar
  30. 30.
    Pontisso P, Morsica G, Ruvoletto MG, Zambello R, Colletta C, Chemello L, Alberti A. Hepatitis B virus binds to peripheral blood mononuclear cells via the pre S1 protein. J Hepatol 12:203–206;1991.CrossRefPubMedGoogle Scholar
  31. 31.
    Rhen M, Sukupolvi S. The role of thetraT gene of theSalmonella typhimurium virulence plasmid for serum resistance and growth within liver macrophages. Microb Pathog 5:275–285;1988.CrossRefPubMedGoogle Scholar
  32. 32.
    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467;1979.Google Scholar
  33. 33.
    Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science 249:386–390;1990.Google Scholar
  34. 34.
    Sheu SY, Lo SJ. Deletion or alteration of hydrophobic amino acids at the first and the third transmembrane domains of hepatitis B surface antigen enhances its production inEscherichia coli. Gene 160:179–184;1995.CrossRefPubMedGoogle Scholar
  35. 35.
    Smith GP. Surface presentation of protein epitopes using bacteriophage expression systems. Curr Opin Biotechnol 2:668–673;1991.CrossRefPubMedGoogle Scholar
  36. 36.
    Sukupolvi S, O'Connor D. TraT lipoprotein, a plasmid-specified mediator of interactions between gram-negative bacteria and their environment. Microbiol Rev 54:331–341;1990.PubMedGoogle Scholar
  37. 37.
    Taylor IM, Harrison JL, Timmis KN, O'Connor CD. The TraT lipoprotein as a vehicle for the transport of foreign antigenic determinants to the cell surface ofEscherichia coli K12: Structure-function relationships in the TraT protein. Mol Microbiol 4:1259–1268;1990.PubMedGoogle Scholar
  38. 38.
    Tindle RW, Croft S, Herd K, Malcolm K, Geczy AF, Stewart T. A vaccine conjugate of ‘ISCAR’ immunocarrier and peptide epitopes of the E7 cervical cancer-associated protein of human papillomavirus type 16 elicits specific Th1- and Th2-type responses in immunized mice in the absence of oil-based adjuvants. Clin Exp Immunol 101:265–271;1995.PubMedGoogle Scholar
  39. 39.
    Towbin H, Stachelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354;1979.PubMedGoogle Scholar
  40. 40.
    van Die I, van Oosterhout J, van Megen I, Bergmans H, Hoeckstra W, Enger-Valk B, Barteling S, Mooi F. Expression of foreign epitopes in P-fimbriae ofEscherichia coli. Mol Gen Genet 222:297–303;1990.CrossRefPubMedGoogle Scholar
  41. 41.
    Wu JY, Newton S, Judd A, Stocker B, Robinson WS. Expression of immunogenic epitopes of hepatitis B surface antigen with hybrid flagellin proteins by a vaccine strain of Salmonella. Proc Natl Acad Sci USA 86:4726–4730;1989.PubMedGoogle Scholar

Copyright information

© National Science Council 1999

Authors and Affiliations

  • Hsin-Hou Chang
    • 1
  • Shih Yi Sheu
    • 1
  • Szecheng J. Lo
    • 1
  1. 1.Institute of Microbiology and Immunology School of Life ScienceNational Yang-Ming UniversityTaipeiTaiwan 11221 (ROC)

Personalised recommendations