Journal of Biomedical Science

, Volume 8, Issue 2, pp 214–222 | Cite as

Microarray profiling of gene expression patterns in bladder tumor cells treated with genistein

  • Chin-Chuan Chen
  • Biehuoy Shieh
  • Ying-Tai Jin
  • Yun-Er Liau
  • Chia-Hui Huang
  • Ji-Tzung Liou
  • Li-Wha Wu
  • Wenya Huang
  • Kung-Chia Young
  • Ming-Derg Lai
  • Hsiao-Sheng Liu
  • Ching Li
Original Paper


Microarray technology was used to gain an insight into the molecular events of tumor cell growth inhibition mediated by the soy isoflavone genistein. For this, a susceptible bladder tumor line TCCSUP was treated with the inhibitory dose (50 µM) of genistein for various periods of time, followed by mRNA isolations, cDNA probe preparations, and hybridization individually to cDNA chips containing 884 sequence-verified known human genes. After analyzing the hybridization signals with a simple quantitative method developed by this study, we detected thategr-1, whose expression has been associated with proliferation and differentiation, was transiently induced and this expression pattern was later confirmed by RT-PCR. Thus, microarray technology is a reliable and powerful tool for profiling gene expression patterns in many biological systems related to cancer. We further detected many groups of genes with distinct expression profiles and most of them encode for proteins that regulate the signal transduction or the cell cycle pathways. These genes warrant further investigation as regards their roles in the susceptibility of the tumor cell line to the antitumor drug.

Key Words

Microarray technology Genistein Bladder tumor cDNA chip egr-1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adlercreutz CH, Goldin BR, Gorbach SL, Hockerstedt KA, Watanabe S, Hamalainen EK, Markkanen MH, Makela TH, Whala KT, Hase TA, Fotsis T. Soybean phytoestrogen intake and cancer risk. J Nutr 125:757s-770s;1995.Google Scholar
  2. 2.
    Aguda BD. A quantitative analysis of the kinetics of the G(2) DNA damage checkpoint system. Proc Natl Acad Sci USA 96:11352–11357;1999.Google Scholar
  3. 3.
    Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S-I, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592–5595;1987.Google Scholar
  4. 4.
    Chen C-J, Chuang Y-C, Lin T-M, Wu H-Y. Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: High-arsenic artesian well water and cancers. Cancer Res 45:5895–5899;1985.Google Scholar
  5. 5.
    Chen JJW, Wu R, Yang P-C, Huang J-Y, Sher Y-P, Han M H, Kao W-C, Lee P-J, Chiu TF, Chang F, Chu Y-W, Wu C-W, Peck K. Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics 51:313–324;1998.Google Scholar
  6. 6.
    Chiang HH, Hwang I, Goodman HM. Isolation of the Arabidopsis GA4 locus. Plant Cell 7:195–201;1995.Google Scholar
  7. 7.
    Cohen DR, Curran T. The structure and function of the fos proto-oncogene. Crit Rev Oncog 1:65–88;1989.Google Scholar
  8. 8.
    Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868;1998.Google Scholar
  9. 9.
    Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA 90:2690–2694;1993.Google Scholar
  10. 10.
    Innocente SA, Abrahamson JL, Cogswell JP, Lee JM. p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci USA 96:2147–2152;1999.Google Scholar
  11. 11.
    Lennon G, Auffray C, Polymeropoulos M, Soares MB. The I.M.A.G.E. Consortium: An integrated molecular analysis of genomes and their expression. Genomics 33:151–152;1996.Google Scholar
  12. 12.
    Leustek T, Murillo M, Cervantes M. Cloning of a cDNA encoding ATP sulfurylase fromArabidopsis thaliana by functional expression inSaccharomyces cerevisiae. Plant Physiol 105:897–902;1994.Google Scholar
  13. 13.
    Li C, Mitchell DH, Coleman DL. Analysis of Egr-1 protein induction in murine peritoneal macrophages treated with granulocyte-macrophage colony-stimulating factor. Yale J Biol Med 67:269–276;1994.Google Scholar
  14. 14.
    Liu J, Lacy J, Sukhatme VP, Coleman DL. Granulocyte-macrophage colony-stimulating factor induces transcriptional activation of Egr-1 in murine peritoneal macrophages. J Biol Chem 266:5929–5933;1991.Google Scholar
  15. 15.
    Logan HM, Cathala N, Grignon C, Davidian JC. Cloning of a cDNA encoded by a member of theArabidopsis thaliana ATP sulfurylase multigene family. Expression studies in yeast and in relation to plant sulfur nutrition. J Biol Chem 271:12227–12233;1996.Google Scholar
  16. 16.
    Markovits J, Linassier C, Fosse P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier J-M, Le Pecq J-B, Larsen AK. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res 49:5111–5117;1989.Google Scholar
  17. 17.
    Mathews MB, Bernstein RM, Franza BR Jr, Garrels JI. Identity of the proliferating cell nuclear antigen and cyclin. Nature 309:374–376;1984.Google Scholar
  18. 18.
    Millward TA, Hess D, Hemmings BA. Ndr protein kinase is regulated by phosphorylation on two conserved sequence motifs. J Biol Chem 274:33847–33850;1999.Google Scholar
  19. 19.
    Murphy M, Stinnakre MG, Senamaud-Beaufort C, Winston NJ, Sweenery C, Kubelka M, Carrington M, Brechot C, Sobczak-Thepot J. Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nat Genet 15:83–86;1997.Google Scholar
  20. 20.
    Naim M, Gestetner B, Bondi A, Birk Y. Antioxidative and antihemolytic activities of soybean isoflavone. J Agric Food Chem 24:1174–1177;1976.Google Scholar
  21. 21.
    Nayak SK, O'Toole C, Price ZH. A cell line from an anaplastic transitional cell carcinoma of human urinary bladder. Br J Cancer 35:142–151;1977.Google Scholar
  22. 22.
    Nguyen HQ, Hoffman-Liebermann B, Liebermann DA. The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell 72:197–209;1993.Google Scholar
  23. 23.
    Ogawara H, Akiyama T, Ishida J, Watanabe S-I, Suzuki K. A specific inhibitor for tyrosine protein kinase from Pseudomonas. J Antibiot 39:606–608;1986.Google Scholar
  24. 24.
    Pan B-J, Hong Y-J, Chang G-C, Wang M-T, Cinkotai FF, Ko Y-C. Excess cancer mortality among children and adolescents in residential districts polluted by petrochemical manufacturing plants in Taiwan. J Toxicol Environ Health 43:117–129;1994.Google Scholar
  25. 25.
    Pasero P, Duncker BP, Schwob E, Gasser SM. A role for the Cdc7 kinase regulatory subunit Dbf4p in the formation of initiation-competent origins of replication. Genes Dev 13:2159–2176;1999.Google Scholar
  26. 26.
    Schena M, Davis RW. Structure of homeoboxleucine zipper genes suggests a model for the evolution of gene families. Proc Natl Acad Sci USA 91:8393–8397;1994.Google Scholar
  27. 27.
    Su I-J, Chen W-J, Lin T-M. High prevalence of transitional cell carcinoma in endemic area of chronic arsenicism in Taiwan. Chin J Oncol Soc 1:29–36;1985.Google Scholar
  28. 28.
    Wang H-J, Murphy PA. Isoflavone composition of American and Japanese soybean in Iowa: Effects of variety, crop year, and location. J Agric Food Chem 42:1674–1677;1994.Google Scholar
  29. 29.
    Yeh MY, Yu DS, Chen SC, Lin MS, Chang SY, Ma CP, Han SH. Establishment and characterization of a human urinary bladder carcinoma cell line (TSGH-8301). J Surg Oncol 37:177–184;1988.Google Scholar
  30. 30.
    Zhang H, Kobayashi R, Galaktionov K, Beach D. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phage kinase. Cell 22:915–925;1995.Google Scholar
  31. 31.
    Zhou J-R, Mukherjee P, Gugger ET, Tanaka T, Blackburn GL, Clinton SK. Inhibition of murine bladder tumorigenesis by soy isoflavones via alterations in the cell cycle, apoptosis, and angiogenesis. Cancer Res 58:5231–5238;1998.Google Scholar

Copyright information

© National Science Council 2001

Authors and Affiliations

  • Chin-Chuan Chen
    • 1
  • Biehuoy Shieh
    • 6
  • Ying-Tai Jin
    • 2
  • Yun-Er Liau
    • 1
  • Chia-Hui Huang
    • 1
  • Ji-Tzung Liou
    • 1
  • Li-Wha Wu
    • 1
  • Wenya Huang
    • 3
  • Kung-Chia Young
    • 3
  • Ming-Derg Lai
    • 4
  • Hsiao-Sheng Liu
    • 5
  • Ching Li
    • 1
  1. 1.Section of Microbiology and Immunology Department of MedicineChung Shan Dental and Medical CollegeTaichungTaiwan
  2. 2.Department of PathologyNational Cheng Kung University, Medical CollegeTainan
  3. 3.Department of Medical TechnologyNational Cheng Kung University, Medical CollegeTainan
  4. 4.Department of BiochemistryNational Cheng Kung University, Medical CollegeTainan
  5. 5.Department of Microbiology and ImmunologyNational Cheng Kung University, Medical CollegeTainan
  6. 6.Department of BiochemistryChung Shan Dental and Medical CollegeTaichungTaiwan, ROC

Personalised recommendations