Journal of Biomedical Science

, Volume 11, Issue 5, pp 542–565 | Cite as

Calcium overload and cardiac function

  • Mario Vassalle
  • Cheng-I Lin


The changes in cardiac function caused by calcium overload are reviewed. Intracellular Ca2+ may increase in different structures [e.g. sarcoplasmic reticulum (SR), cytoplasm and mitochondria] to an excessive level which induces electrical and mechanical abnormalities in cardiac tissues. The electrical manifestations of Ca2+ overload include arrhythmias caused by oscillatory (Vos) and non-oscillatory (Vex) potentials. The mechanical manifestations include a decrease in force of contraction, contracture and aftercontractions. The underlying mechanisms involve a role of Na+ in electrical abnormalities as a charge carrier in the Na+-Ca2+ exchange and a role of Ca2+ in mechanical toxicity. Ca2+ overload may be induced by an increase in [Na+]i through the inhibition of the Na+-K+ pump (e.g. toxic concentrations of digitalis) or by an increase in Ca2+ load (e.g. catecholamines). The Ca2+ overload is enhanced by fast rates. Purkinje fibers are more susceptible to Ca2+ overload than myocardial fibers, possibly because of their greater Na+ load. If the SR is predominantly Ca2+ overloaded, Vos and fast discharge are induced through an oscillatory release of Ca2+ in diastole from the SR; if the cytoplasm is Ca2+ overloaded, the non-oscillatory Vex tail is induced at negative potentials. The decrease in contractile force by Ca2+ overload appears to be associated with a decrease in high energy phosphates, since it is enhanced by metabolic inhibitors and reduced by metabolic substrates. The ionic currents Ios and Iex underlie Vos and Vex, respectively, both being due to an electrogenic extrusion of Ca2+ through the Na+-Ca2+ exchange. Ios is an oscillatory current due to an oscillatory release of Ca2+ in early diastole from the Ca2+-overloaded SR, and Iex is a non-oscillatory current due to the extrusion of Ca2+ from the Ca2+-overloaded cytoplasm. Ios and Iex can be present singly or simultaneously. An increase in [Ca2+]i appears to be involved in the short- and long-term compensatory mechanisms that tend to maintain cardiac output in physiological and pathological conditions. Eventually, [Ca2+]i may increase to overload levels and contribute to cardiac failure. Experimental evidence suggests that clinical concentrations of digitalis increase force in Ca2+-overloaded cardiac cells by decreasing the inhibition of the Na+-K+ pump by Ca2+, thereby leading to a reduction in Ca2+ overload and to an increase in force of contraction.

Key Words

Calcium overload Cardiac arrhythmias Cardiac contraction Cardiac failure Digitalis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abete P, Bernabei R, Di Gennaro M, Iacono G, Rengo F, Carbonin P, Vassalle M. Electrical and ionic mechanisms of early reperfusion arrhythmias in sheep cardiac Purkinje fibers. J Electrocardiol 21:199–212;1988.Google Scholar
  2. 2.
    Abete P, Vassalle M. The role of intracellular sodium activity in the inotropy potentiation among high [Ca]o, norepinephrine and strophanthidin. Arch Int Pharmacodyn Ther 278:87–96;1985.Google Scholar
  3. 3.
    Abete P, Vassalle M: Strophanthidin and force regulation by intracellular sodium activity in cardiac Purkinje fibers. Eur J Pharmacol 141:51–65;1987.Google Scholar
  4. 4.
    Abete P, Vassalle M. Relation among Na+-K+ pump, Na+ activity and force in strophanthidin inotropy in sheep cardiac Purkinje fibres. J Physiol (Lond) 404:275–299;1988.Google Scholar
  5. 5.
    Abete P, Vassalle M. Role of intracellular Na+ activity in the negative inotropy of strophanthidin in cardiac Purkinje fibers. Eur J Pharmacol 211:399–409;1992.Google Scholar
  6. 6.
    Abete P, Vassalle M. Role of intracellular sodium activity in the control of contraction in cardiac Purkinje fibers. J Biomed Sci 1:28–42;1994.Google Scholar
  7. 7.
    Aceto E, Vassalle M. On the mechanism of the positive inotropy of low concentrations of strophanthidin. J. Pharmacol Exp Ther 259:182–189;1991.Google Scholar
  8. 8.
    Aceto E, Vassalle M. On the role of sarcoplasmic reticulum in reperfusion arrhythmias. G It Aritmol Cardiostim 5(suppl 1):166–170;2002.Google Scholar
  9. 9.
    Bers DM, Barry WH, Despa S. Intracellular Na+ regulation in cardiac myocytes. Cardiovasc Res 57:897–912;2003.Google Scholar
  10. 10.
    Bhattacharyya ML, Vassalle M. The effect of metabolic inhibitors on strophanthidin-induced arrhythmias and contracture in cardiac Purkinje fibers. J Pharmacol Exp Ther 219:75–84;1981.Google Scholar
  11. 11.
    Bhattacharyya ML, Vassalle M. The effect of local anaesthetics on strophanthidin toxicity in canine cardiac Purkinje fibres. J Physiol (Lond) 312:125–142;1981.Google Scholar
  12. 12.
    Bhattacharyya ML, Vassalle M. Effect of tetrodotoxin on electrical and mechanical activity of cardiac Purkinje fibers. J Electrocardiol 15:351–360;1982.Google Scholar
  13. 13.
    Blaustein MP, Lederer WJ. Sodium/calcium exchange: Its physiological implications. Physiol Rev 79:763–854;1999.Google Scholar
  14. 14.
    Bocchi L, Vassalle M. A slow sodium current present in Purkinje but not in myocardial single cells. It Heart J 1(suppl 3):S91;2000.Google Scholar
  15. 15.
    Breier A, Sulova Z, Vrbanova A: Ca2+-induced inhibition of sodium pump: Noncompetitive inhibition in respect of magnesium and sodium cations. Gen Physiol Biophys 17:179–188;1998.Google Scholar
  16. 16.
    Brooks CMcC, Lu H-H. The Sinoatrial Pacemaker of the Heart. Springfield, Thomas, 1972.Google Scholar
  17. 17.
    Carafoli E. Historical review. Mitochondria and calcium: Ups and downs of an unusual relationship. Trends Biochem Sci 28:175–181;2003.Google Scholar
  18. 18.
    Carmeliet E, Saikawa T. Shortening of the action potential and reduction of the pacemaker activity by lidocaine, quinidine and procainamide in sheep cardiac Purkinje fibers. Circ Res 50:257–272;1982.Google Scholar
  19. 19.
    Chen YJ, Chen SA, Chen YC, Yeh HI, Chan P, Chang MS, Lin C-I. Effects of rapid atrial pacing on the arrhythmogenic activity of single cardiomyocytes from pulmonary veins: Implication in initiation of atrial fibrillaton. Circulation 104:2849–2854;2001.Google Scholar
  20. 20.
    Cohen CJ, Fozzard HA, Sheu S-S. Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circ Res 50:651–662;1982.Google Scholar
  21. 21.
    Del Monte F, Johnson CM, Stepanek AC, Doye AA, Gwathmey JK. Defects in calcium control. J Card Fail 8:S421-S431;2002.Google Scholar
  22. 22.
    Dhalla NS, Pierce GN, Panagia V, Singa PK, Beamish RE. Calcium movements in relation to heart function. Basic Res Cardiol 77:117–39;1982.Google Scholar
  23. 23.
    Di Gennaro M, Carbonin PU, Iacono G, Vassalle M. Caffeine actions on the electro-mechanical activity of sinus node cells. Proc 8th Int Congr ‘The New Frontiers of Arrhythmias’ 4:99–102;1988.Google Scholar
  24. 24.
    Di Gennaro M, Carbonin P, Vassalle M. On the mechanism by which caffeine abolishes the fast rhythms induced cardiotonic steroids. J Mol Cell Cardiol 16:851–862;1984.Google Scholar
  25. 25.
    Di Gennaro M, Vassalle M. Relationship between caffeine effects and calcium in canine cardiac Purkinje fibers. Am J Physiol 249:H520-H533;1985.Google Scholar
  26. 26.
    Di Gennaro M, Vassalle M, Iacono G, Pahor M, Bernabei R, Carbonin PU. On the mechanisms by which hypoxia eliminates digitalis-induced tachyarrhythmias. Eur Heart J 7:341–352;1986.Google Scholar
  27. 27.
    Ellis D. The effects of external cations and ouabain on the intracellular sodium activity of sheep heart Purkinje fibres. J Physiol (Lond) 273:211–240;1997.Google Scholar
  28. 28.
    Ferrier GR. Digitalis arrhythmias. Role of the oscillatory afterpotentials. Prog Cardiovasc Dis 19:459–474;1977.Google Scholar
  29. 29.
    Ferrier GR, Moe GK. Effects of calcium on acetylstrophanthidin-induced transient depolarizations in canine Purkinje tissues. Circulation 33:508–515;1973.Google Scholar
  30. 30.
    Ferrier GR, Saunders JH, Mendez C. A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circ Res 32:600–609;1973.Google Scholar
  31. 31.
    Frey N, McKinsey TA, Olson EN. Decoding calcium signals involved in cardiac growth and function. Nat Med 6:1221–1227;2000.Google Scholar
  32. 32.
    Furchgott RF, De Gubareff T. The high energy phosphate content of cardiac muscle under various experimental conditions which alter contractile strength. J Pharmacol Exp Ther 124:203–218;1958.Google Scholar
  33. 33.
    Glitsch HG, Grabowski W, Thielen J. Activation of the electrogenic sodium pump in guinea-pig atria by external potassium ions. J Physiol (Lond) 276:515–524;1978.Google Scholar
  34. 34.
    Gonzalez MD, Vassalle M. Role of oscillatory potential and pacemaker shifts in digitalis intoxication of the sino-atrial node. Circulation 87:1705–1714;1993.Google Scholar
  35. 35.
    Greenberg YJ, Vassalle M. On the mechanism of overdrive suppression in the guinea pig sinoatrial node. J Electrocardiol 23:53–67;1990.Google Scholar
  36. 36.
    Greenspan K, Vassalle M, Hoffman BF. Ouabain toxicity in complete heart block (abstract). Fed Proc 2:134:1962.Google Scholar
  37. 37.
    Hasegawa J, Satoh H, Vassalle M. Induction of the oscillatory current by low concentrations of caffeine in sheep cardiac Purkinje fibres. Naunyn Schmiedebergs Arch Pharmacol 335:310–320;1987.Google Scholar
  38. 38.
    Hasegawa J, Vassalle M. Enhancement and suppression of currents related to calcium-overload by different concentrations of methylxanthines. Arch Int Pharmacodyn Ther 282:68–81;1986.Google Scholar
  39. 39.
    Hou ZY, Lin C-I, Vassalle M, Chiang BN, Cheng KK. Role of acetylcholine in induction of repetitive activity in human atrial fibers. Am J Physiol 256:H74-H84;1989.Google Scholar
  40. 40.
    Iacono G, Vassalle M. The relation between cesium, intracellular sodium activity and pacemaker potential in cardiac Purkinje fibers. Can J Physiol Pharmacol 68:1236–1246;1990.Google Scholar
  41. 41.
    Iacono G, Vassalle M. On the mechanism of the different sensitivity of Purkinje and myocardial fibers to strophanthidin. J Pharmacol Exp Ther 253:1–12;1990.Google Scholar
  42. 42.
    Iacono G, Vassalle M. Effects of caffeine on intracellular sodium activity in cardiac Purkinje fibres: Relation to force. Br J Pharmacol 113:289–295;1994.Google Scholar
  43. 43.
    Ishikawa S, Vassalle M. Different forms of spontaneous discharge induced by strophanthidin in cardiac Purkinje fibers. Am J Physiol 243:H767-H778;1982.Google Scholar
  44. 44.
    Ishikawa S, Vassalle M. Reversal of strophanthidin negative inotropy by metabolic substrates in cardiac Purkinje fibers. Cardiovasc Res 19:537–551;1985.Google Scholar
  45. 45.
    Janczewski AM, Lakatta EG. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes. J Physiol (Lond) 471:343–363;1993.Google Scholar
  46. 46.
    Kass RS, Tsien RW, Weingart R: Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibres. J Physiol (Lond) 281:209–226;1978.Google Scholar
  47. 47.
    Kotake H, Vassalle M. Rate-force relationship and calcium overload in canine Purkinje fibers. J Mol Cell Cardiol 18:1047–1066;1986.Google Scholar
  48. 48.
    Kudoh S, Akazawa H, Takano H, Zoub Y, Toko H, Nagai T, Komuro I. Stretch-modulation of second messengers: Effects on cardiomyocyte ion transport. Prog Biophys Mol Biol 82:57–66;2003.Google Scholar
  49. 49.
    Kuwana T, Newmeyer DD. Bc1-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15:691–699;2003.Google Scholar
  50. 50.
    Lado MG, Sheu S-S, Fozzard HA. Changes in intracellular Ca2+ activity with stimulation in sheep cardiac Purkinje strands. Am J Physiol 243:H133-H137;1982.Google Scholar
  51. 51.
    Lederer WJ, Tsien RW. Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibres. J Physiol (Lond) 263:73–100;1976.Google Scholar
  52. 52.
    Lee CO, Abete P, Pecker M, Sonn JK, Vassalle M. Strophanthidin inotropy: Role of intracellular sodium ion activity and sodium-calcium exchange. J Mol Cell Cardiol 17:1043–1053;1985.Google Scholar
  53. 53.
    Lee CO, Dagostino M. Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine Purkinje fibers. Biophys J 40:185–198;1982.Google Scholar
  54. 54.
    Lee CO, Vassalle M: Modulation of intracellular Na+ activity and cardiac force by norepinephrine and Ca2+. Am J Physiol 244:C110-C114;1983.Google Scholar
  55. 55.
    Lee KS, Klaus W. The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol Rev 23:193–261;1971.Google Scholar
  56. 56.
    Lehninger AL. Ca2+ transport by mitochondria and its possible role in the cardiac contraction-relaxation cycle. Circ Res 35(suppl 3):83–90;1974.Google Scholar
  57. 57.
    Li T, Vassalle M. Sodium-calcium exchange in Purkinje fibers: Electrical and mechanical effects. Basic Res Cardiol 78:396–414;1983.Google Scholar
  58. 58.
    Li T, Vassalle M. The negative inotropic effect of calcium overload in cardiac Purkinje fibers. J Mol Cell Cardiol 16:65–77;1984.Google Scholar
  59. 59.
    Lin C-I, Chiu TH, Chiang BN, Cheng KK. Electromechanical effects of caffeine in isolated human atrial fibres. Cardiovasc Res 19:727–733;1985.Google Scholar
  60. 60.
    Lin C-I, Kotake K, Vassalle M. On the mechanism underlying the oscillatory current in cardiac Purkinje fibers. J Cardiovasc Pharmacol 8:906–914;1986.Google Scholar
  61. 61.
    Lin C-I, Vassalle M. Role of sodium in strophanthidin toxicity of Purkinje fibers. Am J Physiol 234:H477-H486;1978.Google Scholar
  62. 62.
    Lin C-I, Vassalle M. Sodium lack prevents strophanthidin toxicity in Purkinje fibers. Cardiology 64:110–121;1979.Google Scholar
  63. 63.
    Lin C-I, Vassalle M. The antiarrhythmic effect of potassium and rubidium in strophanthidin toxicity. Eur J Pharmacol 62:1–15;1980.Google Scholar
  64. 64.
    Lin C-I, Vassalle M. The effect of lithium on strophanthidin toxicity in cardiac Purkinje fibers. Proc Soc Exp Biol Med 164:212–216;1980.Google Scholar
  65. 65.
    Lin C-I, Vassalle M. Role of calcium in the inotropic effects of caffeine in cardiac Purkinje fibers. Int J Cardiol 3:421–434;1983.Google Scholar
  66. 66.
    Lin C-I, Vassalle M. Calcium overload and strophanthidin-induced mechanical toxicity in cardiac Purkinje fibers. Can J Physiol Pharmacol 61:1329–1339;1983.Google Scholar
  67. 67.
    Liu YM, Yu H, Li C-Z, Cohen IS, Vassalle M. Cs+ effects on if and ik in rabbit sinoatrial node myocytes: Implications for SA node automaticity. J Cardiovasc Pharmacol 32:783–790;1998.Google Scholar
  68. 68.
    Loh SH, Lee AR, Huang WH, Lin C-I. Ionic mechanisms responsible for the antiarrhythmic action of dehydroevodiamine in guinea-pig isolated cardiomyocytes. Br J Pharmacol 106:517–523;1992.Google Scholar
  69. 69.
    Lu H-H, Lange G, Brooks CMcC. Factors controlling pacemaker action in cells of the sinoatrial node. Circ Res 17:460–471;1965.Google Scholar
  70. 70.
    Marban E, Tsien RW. Enhancement of calcium current during digitalis inotropy in mammalian heart: Positive feed-back regulation by intracellular calcium? J Physiol (Lond) 329:589–614;1982.Google Scholar
  71. 71.
    Mehta NL, Vassalle M. The dependence of strophanthidin inotropy on sodium concentration and calcium overload (abstract). Circulation 64:IV-273;1981.Google Scholar
  72. 72.
    Musso E, Vassalle M. The role of calcium in overdrive suppression of canine cardiac Purkinje fibers. Circ Res 51:167–180;1982.Google Scholar
  73. 73.
    Noble D: Mechanism of action of therapeutic levels of cardiac glycosides. Cardiovasc Res 14:495–514;1980.Google Scholar
  74. 74.
    Piper HM, Meuter K, Schafer C. Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg 75:S644-S648;2003.Google Scholar
  75. 75.
    Reuter H, Scholz H: The regulation of the calcium conductance of cardiac muscle by adrenaline. J Physiol (Lond) 26:49–62;1977.Google Scholar
  76. 76.
    Rosen MR, Gelband H, Merker C, Hoffman BF. Mechanisms of digitalis toxicity. Effects of ouabain on phase four of canine Purkinje fiber transmembrane potentials. Circulation 47:681–689;1973.Google Scholar
  77. 77.
    Rota M, Vassalle M. Patch-clamp analysis in canine cardiac Purkinje cells of a novel sodium component in the pacemaker range. J Physiol (Lond) 548.1:147–165;2003.Google Scholar
  78. 78.
    Sands DS, Winegrad S. Treppe and total calcium content of the frog ventricle. Am J Physiol 218:908–910;1970.Google Scholar
  79. 79.
    Satoh H, Hasegawa J, Vassalle M. On the characteristics of the inward tail current induced by calcium overload. J Mol Cell Cardiol 21:5–20;1989.Google Scholar
  80. 80.
    Satoh H, Vassalle M. Reversal of caffeine-induced calcium overload in cardiac Purkinje fibers. J Pharmacol Exper Ther 234:172–179;1985.Google Scholar
  81. 81.
    Sayer RJ. Intracellular Ca2+ handling. Adv Exp Med Biol 513:183–196;2002.Google Scholar
  82. 82.
    Schatzmann HJ. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natrium-transport durch die Erythrozytenmembran. Helv Physiol Pharmacol Acta 11:346–354;1953.Google Scholar
  83. 83.
    Sei CA, Irons CE, Sprenkle AB, McDonough PM, Brown JH, Glembotski CC. The alpha-adrenergic stimulation of atrial natriuretic factor expression in cardiac myocytes requires calcium influx, protein kinase C, and calmodulin-regulated pathways. J Biol Chem 266:15910–15916;1991.Google Scholar
  84. 84.
    Shine KI, Langer GA. Caffeine effects upon contraction and calcium exchange in rabbit myocardium. J Mol Cell Cardiol 3:255–270;1971.Google Scholar
  85. 85.
    Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401;1957.Google Scholar
  86. 86.
    Smith TW, Braunwald E. The management of cardiac failuere. In: Braunwald E, ed. Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia, Saunders, 509–570;1980.Google Scholar
  87. 87.
    Sohn HG, Vassalle M: Cesium effects on dual pacemaker mechanisms in guinea pig sinoatrial node. J Mol Cell Cardiol 27:563–577;1995.Google Scholar
  88. 88.
    Sommer JR, Johnson EA. Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J Cell Biol 36:497–526;1968.Google Scholar
  89. 89.
    Spiegler P, Vassalle M. Role of voltage oscillations in the automaticity of sheep cardiac Purkinje fibers. Can J Physiol Pharmacol 73:1165–1180;1995.Google Scholar
  90. 90.
    Tamargo J, Vassalle M. Mechanisms by which calcium modulates diastolic depolarization in sheep Purkinje fibers. J Electrocardiol 24:349–361;1991.Google Scholar
  91. 91.
    Valenzuela F, Vassalle M. Overdrive excitation and cellular calcium load in canine cardiac Purkinje fibers. J Electrocardiol 18:21–34;1985.Google Scholar
  92. 92.
    Vassalle M. Cardiac glycosides: Regulation of force and rhythm. In: Nathan RD, ed. Cardiac Muscle. Regulation of Excitation and Contraction. New York, Academic Press, 237–267;1986.Google Scholar
  93. 93.
    Vassalle M. Toxic mechanisms of strophanthidin in cardiac Purkinje fibers (abstract). Physiologist 18:429;1975.Google Scholar
  94. 94.
    Vassalle M. Mechanisms underlying cardiac pacemaker activity. J Med Sci 23:249–264;2003.Google Scholar
  95. 95.
    Vassalle M, Apfel H, Iacono G. Acetylcholine-induced overdrive excitation and its mechanism. Proc Eighth Int Congr ‘The New Frontiers of Arrhythmias’ 4:87–92, 1988.Google Scholar
  96. 96.
    Vassalle M, Barnabei O. Norepinephrine and potassium fluxes in cardiac Purkinje fibers. Pflügers Arch 322:287–303;1971.Google Scholar
  97. 97.
    Vassalle M, Bhattacharyya ML. Local anesthetics and the role of sodium in the force development by canine ventricular muscle and Purkinje fibers. Circ Res 47:666–674;1980.Google Scholar
  98. 98.
    Vassalle M, Bhattacharyya ML. Interactions of norepinephrine and strophanthidin in cardiac Purkinje fibers. Int J Cardiol 1:179–194;1981.Google Scholar
  99. 99.
    Vassalle M, Carpentier R. Overdrive excitation: The initiation of spontaneous activity in Purkinje fibers following a fast drive in the presence of norepinephrine. Pflügers Arch 332:198–205;1972.Google Scholar
  100. 100.
    Vassalle M, Di Gennaro M. Caffeine actions on currents induced by calcium overload in Purkinje fibers. Eur J Pharmacol 106:121–131;1984.Google Scholar
  101. 101.
    Vassalle M, Du F. A slow sodium current in single Purkinje cells. FASEB J 14:A699;2000.Google Scholar
  102. 102.
    Vassalle M, Greenspan K, Hoffman BF. An analysis of arrhythmias induced by ouabain in intact dogs. Circ Res 13:132–148;1963.Google Scholar
  103. 103.
    Vassalle M, Karis J, Hoffman BF. Toxic effects of ouabain on Purkinje fibers and ventricular muscle fibers. Am J Physiol 203:433–439;1962.Google Scholar
  104. 104.
    Vassalle M, Knob RE, Lara GA, Stuckey JH. The effect of adrenergic enhancement on overdrive excitation. J Electrocardiol 9:335–343;1976.Google Scholar
  105. 105.
    Vassalle M, Lee CO. The relationship among intracellular sodium activity, calcium, and strophanthidin inotropy in canine cardiac Purkinje fibers. J Gen Physiol 83:287–307;1984.Google Scholar
  106. 106.
    Vassalle M, Lin C-I. Effect of calcium on strophanthidin-induced electrical and mechanical toxicity in cardiac Purkinje fibers. Am J Physiol 236:H689-H697;1979.Google Scholar
  107. 107.
    Vassalle M, Mugelli A: An oscillatory current in sheep cardiac Purkinje fibers. Circ Res 48:618–631;1981.Google Scholar
  108. 108.
    Vassalle M, Musso E. On the mechanisms underlying digitalis toxicity in cardiac Purkinje fibers. In: Roy PE, Dhalla PE, eds. Recent Advances in Studies on Cardiac Structure and Metabolism, vol 9. The Sarcolemma. Baltimore, University Park Press, 355–376;1976.Google Scholar
  109. 109.
    Vassalle M, Ottolenghi C, Manservigi R, Barnabei O. Glycogen metabolism and its control by norepinephrine in cardiac Purkinje fibers. Arch Sci Biol 56:97–114;1972.Google Scholar
  110. 110.
    Vassalle M, Scidá EE. The role of sodium in spontaneous discharge in the absence and in the presence of strophanthidin (abstract). Fed Proc 38:880;1979.Google Scholar
  111. 111.
    Vassalle M, Yu H, Cohen IS. The pacemaker current in cardiac Purkinje myocytes. J Gen Physiol 106:559–578;1995.Google Scholar
  112. 112.
    Wollenberger A. The energy metabolism of the failing heart and the metabolic action of the cardiac glycosides. Pharmacol Rev 1:311–352;1949.Google Scholar
  113. 113.
    Wollenberger A, Karsh ML. Effect of a cardiac glycoside on contraction and the energyrich phosphate content of the heart poisoned with dinitrophenol. J Pharmacol Exp Therap 105:477–485;1952.Google Scholar
  114. 114.
    Yang L, Vassalle M. Effects of strophanthidin on the slow inward current in guinea pig isolated ventricular myocytes. Clin Exp Pharmacol Physiol 17:105–120;1990.Google Scholar
  115. 115.
    Yeh TC, Vassalle M, Lin C-I. Arrhythmogenic mechanisms in human atrial and ventricular muscle fibers. Cardiology 80:205–214;1992.Google Scholar
  116. 116.
    Zhang H, Vassalle M. Role of dual pacemaker mechanisms in sino-atrial node discharge. J Biomed Sci 7:100–113;2000.Google Scholar

Copyright information

© National Science Council 2004

Authors and Affiliations

  • Mario Vassalle
    • 1
  • Cheng-I Lin
    • 2
  1. 1.Department of Physiology and PharmacologySUNY, Downstate Medical CenterBrooklynUSA
  2. 2.Department of Physiology and BiophysicsNational Defense Medical CenterTaipeiTaiwan (ROC)

Personalised recommendations