Journal of Biomedical Science

, Volume 10, Issue 5, pp 475–489 | Cite as

Human herpesvirus-8-encoded signalling ligands and receptors

  • John Nicholas
Review

Abstract

Analysis of the genome of human herpesvirus 8 (HHV-8) led to the discovery of several novel genes, unique among the characterized gammaherpesviruses. These include cytokines (interleukin-6 and chemokine homologues), two putative signal-transducing transmembrane proteins encoded by genes K1 and K15 at the genome termini, and an OX-2 (CD200) receptor homologue that had not previously been identified in a gammaherpesvirus. HHV-8 also specifies a diverged version of the gammaherpesvirus-conserved G protein-coupled chemokine receptor (vGCR) and a latently expressed protein unique to HHV-8 specified by open reading frame (ORF) K12. These cytokine and receptor homologues mediate signal transduction or modulate the activities of other endogenous cytokines and receptors to enhance viral productive replication, regulate latent-lytic switching, evade host attack, or mediate cell survival. The viral signalling ligands and receptors are also potential contributors to virus-associated diseases, Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease, and so represent potentially important targets for therapeutic and antiviral drugs. Understanding these proteins' modes of action and functions in viral biology and disease is therefore of considerable importance, and the subject of this review.

Key Words

Human herpesvirus 8 Gammaherpesvirus Viral signalling ligand Kaposi's sarcoma Primary effusion lymphoma Multicentric Castleman's disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler B, Schaadt E, Kempkes B, Zimber-Strobl U, Baier B, Bornkamm GW. Control of Epstein-Barr virus reactivation by activated CD40 and viral latent membrane protein 1. Proc Natl Acad Sci USA 99:437–442;2002.Google Scholar
  2. 2.
    Albrecht J-C, Nicholas J, Biller D, Cameron KR, Biesinger B, Newman C, Wittmann S, Craxton MA, Coleman H, Fleckenstein B, Honess RW. Primary structure of the herpesvirus saimiri genome. J Virol 66:5047–5058;1992.Google Scholar
  3. 3.
    Alexander L, Denekamp L, Knapp A, Auerbach MR, Damania B, Desrosiers RC. The primary sequence of rhesus monkey rhadinovirus isolate 26–95: Sequence similarities to Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J Virol 74:3388–3398;2000.Google Scholar
  4. 4.
    Aoki Y, Tosato G. Role of vascular endothelial growth factor/vascular permeability factor in the pathogenesis of Kaposi's sarcoma-associated herpesvirus-infected primary effusion lymphomas. Blood 94:4247–4254;1999.Google Scholar
  5. 5.
    Aoki Y, Jaffe ES, Chang Y, Jones K, Teruya-Feldstein J, Moore PS, Tosato G. Angiogenesis and hematopoiesis induced by Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93:4034–4043;1999.Google Scholar
  6. 6.
    Aoki Y, Narazaki M, Kishimoto T, Tosato G. Receptor engagement by viral interleukin-6 encoded by Kaposi's sarcoma-associated herpesvirus. Blood 98:3042–3049;2001.Google Scholar
  7. 7.
    Aoki Y, Yarchoan R, Braun J, Iwamoto A, Tosato G. Viral and cellular cytokines in AIDS-related malignant lymphomatous effusions. Blood 96:1599–1601;2000.Google Scholar
  8. 8.
    Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385:347–350;1997.Google Scholar
  9. 9.
    Asou H, Said JW, Yang R, Munker R, Park DJ, Kamada N, Koeffler HP. Mechanisms of growth control of Kaposi's sarcoma-associated herpes virus-associated primary effusion lymphoma cells. Blood 91:2475–2481;1998.Google Scholar
  10. 10.
    Bahr U, Darai G. Analysis and characterization of the complete genome of tupaia (tree shrew) herpesvirus. J Virol 75:4854–4870;2001.Google Scholar
  11. 11.
    Bais C, Santomasso B, Coso O, Arvanitakis L, Geras-Raaka E, Gutkind JS, Asch AS, Cesarman E, Gershengorn MC, Mesri EA. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391:86–89;1998.Google Scholar
  12. 12.
    Barclay AN. Different reticular elements in rat lymphoid tissue identified by localization of Ia, Thy-1 and MRC OX-2 antigens. Immunology 44:727–736;1981.Google Scholar
  13. 13.
    Borriello F, Lederer J, Scott S, Sharpe AH. MRC OX-2 defines a novel T cell costimulatory pathway. J Immunol 158:4548–4554;1997.Google Scholar
  14. 14.
    Boshoff C, Endo Y, Collins PD, Takeuchi Y, Reeves JD, Schweickart VL, Saini MA, Sasaki T, Williams TJ, Gray PW, Moore PS, Chang Y, Weiss RA. Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 278:290–294;1997.Google Scholar
  15. 15.
    Bravo J, Staunton D, Heath JK, Jones EY: Crystal structure of a cytokine binding region of gp130. EMBO J 17:1665–1674;1998Google Scholar
  16. 16.
    Bridgeman A, Stevenson PG, Simas JP, Efstathiou S. A secreted chemokine binding protein encoded by murine gammaherpesvirus-68 is necessary for the establishment of a normal latent load. J Exp Med 194:301–312;2001.Google Scholar
  17. 17.
    Brouset P, Cesarman E, Meggetto F, Lamant L, Delsol G. Colocalization of the viral interleukin-6 with latent nuclear antigen-1 of human herpesvirus-8 in endothelial spindle cells of Kaposi's sarcoma and lymphoid cells of multicentric Castleman's disease. Hum Pathol 32:95–100.Google Scholar
  18. 18.
    Burger R, Neipel F, Fleckenstein B, Savino R, Ciliberto G, Kalden JR, Gramatzki M: Human herpesvirus 8 interleukin-6 homologue is functionally active on human myeloma cells. Blood 91:1858–1863;1998.Google Scholar
  19. 19.
    Burger R, Wendler J, Antoni K, Helm G, Kalden JR, Gramatzki M: Interleukin-6 production in B-cell meoplasias and Castleman's disease: Evidence for an additional paracrine loop. Ann Hematol 69:25–31;1994.Google Scholar
  20. 20.
    Cambier JC. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J Immunol 155:3281–3285.Google Scholar
  21. 21.
    Cameron C, Hota-Mitchell S, Chen L, Barrett J, Cao J-X, Macaulay C, Willer D, Evans D, McFadden G. The complete DNA sequence of myxoma virus. Virology 264:298–318;1999.Google Scholar
  22. 22.
    Cannon JS, Nicholas J, Ornstein JM, Mann RB, Murray PJ, Browning PJ, DiGiuseppe JA, Cesarman E, Hayward GS, Ambinder RF. Heterogeneity of viral IL-6 expression in HHV-8-associated disease. J Infect Dis 180:824–828;1999.Google Scholar
  23. 23.
    Cannon M, Philpot NJ, Cesarman E. The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J Virol 77:57–67;2003.Google Scholar
  24. 24.
    Chang P-J, Shedd D, Grandoville L, Cho M-S, Chen L-W, Chang J, Miller G. Open reading frame 50 protein of Kaposi's sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J Virol 76:3168–3178;2002.Google Scholar
  25. 25.
    Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 265:1865–1869;1994.Google Scholar
  26. 26.
    Chatterjee M, Osborne J, Bestetti G, Chang Y, Moore PS. Viral interleukin-6-induced cell proliferation and immune evasion of interferon activity. Science 298:1432–1435;2002.Google Scholar
  27. 27.
    Chee MS, Satchwell SC, Preddie E, Weston KM, Barrell BG. 1990. Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature 344:774–777;1990.Google Scholar
  28. 28.
    Chiou C-J, Poole L.J, Kim PS, Ciufo DM, Cannon JS, ap Rhys CM, Alcendor DJ, Zong J-C, Ambinder RF, Hayward GS. Patterns of expression and transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi's sarcoma-associated herpesvirus. J Virol 76:3421–3439;2002.Google Scholar
  29. 29.
    Choi J-K, Lee B-S, Shim SN, Li M, Jung JU. Identification of novel K15 gene at the right-most end of the Kaposi's sarcoma-associated herpesvirus genome. J Virol 74:436–446;2000.Google Scholar
  30. 30.
    Chow D, He X, Snow AL, Rose-John S, Garcia KC. Structure of an extracellular gp130 cytokine receptor complex. Science 291:2150–2155;2001.Google Scholar
  31. 31.
    Chung Y-H, Means R.E, Choi J-K, Lee B-S, Jung JU. Kaposi's sarcoma-associated herpesvirus OX2 glycoprotein activates myeloid-lineage cells to induce inflammatory cytokine production. J Virol 76:4688–4698;2002.Google Scholar
  32. 32.
    Couty JP, Geras-Raaka E, Weksler BB, Gershengorn MC. Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor signals through multiple pathways in endothelial cells. J Biol Chem 276:33805–33811;2001.Google Scholar
  33. 33.
    Dairaghi DJ, Fan RA, McMaster BE, Hanley MR, Schall TJ. HHV-8-encoded MIP-I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J Biol Chem 274:21569–21574;1999.Google Scholar
  34. 34.
    Damania B, Li M, Choi J-K, Alexander L, Jung JU, Desrosiers RC. Identification of the R1 oncogene and its protein product from the rhadinovirus of rhesus monkeys. J Virol 73:5123–5131;1999.Google Scholar
  35. 35.
    Davison AJ, Dolan A, Akter P, Addison C, Dargan DJ, Alcendor DJ, McGeoch DJ, Hayward GS. The human cytomegalovirus genome revisited: Comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84:17–28;2003.Google Scholar
  36. 36.
    Duboise SM, Guo J, Czajak S, Desrosiers RC, Jung JU. STP and Tip are essential for herpesvirus saimiri oncogenicity. J Virol 72:1308–1313;1998a.Google Scholar
  37. 37.
    Duboise S.M, Lee H, Guo J, Choi JK, Czajak S, Simon M, Desrosiers RC, Jung JU. Mutation of the Lck-binding motif of Tip enhances lymphoid cell activation by herpesvirus saimiri. J Virol 72:2607–2614;1998b.Google Scholar
  38. 38.
    Endres MJ, Garlise CG, Xiao H, Shan L, Hedrick JA. The Kaposi's sarcoma-related herpesvirus (KSHV)-encoded chemokine vMIP-I is a specific agonist for the CC chemokine receptor (CCR)8. J Exp Med 189:1993–1998;1999.Google Scholar
  39. 39.
    Ensser A, Pflanz R, Fleckenstein B. Primary structure of the alcelaphine herpesvirus 1 genome. J Virol 71:6517–6525;1997.Google Scholar
  40. 40.
    Estep RD, Axthelm MK, Wong SW. A G protein-coupled receptor encoded by rhesus rhadinovirus is similar to ORF74 of Kaposi's sarcoma-associated herpesvirus. J Virol 77:1738–1746;2003.Google Scholar
  41. 41.
    Fleming P, Davis-Poynter N, Degli-Esposti M, Densley E, Papadimitriou J, Shellam G, Farrell H. The murine cytomegalovirus chemokine homolog, m139/129, is a determinant of viral pathogenicity. J Virol 73:6800–6809;1999.Google Scholar
  42. 42.
    Flore O, Rafii S, Ely S, O'Leary JJ, Hyjek EM, Cesarman E. Transformation of human primary endothelial cells by Kaposi's sarcoma-associated herpesvirus. Nature 394:588–592;1998.Google Scholar
  43. 43.
    Fraile-Ramos A, Kledal TN, Pelchen-Matthews A, Bowers K, Schwartz TW, Marsh M: The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell 12:1737–1749;2001.Google Scholar
  44. 44.
    Freuhling S, Longnecker R. The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235:241–251;1997.Google Scholar
  45. 45.
    Geras-Raaka E, Arvanitakis L, Bais C, Cesarman E, Mesri EA, Gershengorn MC. Inhibition of constitutive signaling of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor by protein kinases in mammalian cells in culture. J Exp Med 187:801–806;1998.Google Scholar
  46. 46.
    Geras-Raaka E, Varma A, Clark-Lewis I, Gershengorn MC. Kaposi's sarcoma-associated herpesvirus (KSHV) chemokine vMIP-II and human SDF-1α inhibit signaling by KSHV G protein-coupled receptor. Biochem Biophys Res Comm 253:725–727;1998.Google Scholar
  47. 47.
    Geras-Raaka E, Varma A, Hao H, Clark-Lewis I, Gershengorn MC. Human interferon-γ-inducible protein 10 (IP-10) inhibits constitutive signaling of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. J Exp Med 188:405–408;1998.Google Scholar
  48. 48.
    Gershengorn MC, Garas-Raaka E, Varma A, Clark-Lewis I. Chemokines activate Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor in mammalian cells in culture. J Clin Invest 102:1469–1472;1998.Google Scholar
  49. 49.
    Glenn M, Rainbow L, Auradé, F, Davison A, Schulz TF. Identification of a spliced gene from Kaposi's sarcoma-associated herpesvirus encoding a protein with similarities to latent membrane proteins 1 and 2A of Epstein-Barr virus. J Virol 73:6953–6963;1999.Google Scholar
  50. 50.
    Gompels UA, Nicholas J, Lawrence G, Jones M, Thomson BJ, Martin MED, Efstathiou S, Craxton M, Macaulay HA. The DNA sequence of human herpesvirus-6: Structure, coding content, and genome evolution. Virology 209:29–51;1995.Google Scholar
  51. 51.
    Gorczynski RM, Cattral MS, Chen Z, Hu J, Lei J, Min W.-P., Yu G, Ni J. An immunoadhesin incorporating the molecule OX-2 is a potent immunosuppressant that prolongs allo- and xenograft survival. J Immunol 163:1654–1660;1999.Google Scholar
  52. 52.
    Gorczynski RM, Chen Z, Fu X.-M, Zeng H. Increased expression of the novel molecule OX-2 is involved in prolongation of murine renal allograft survival. Transplantation 65:1106–1114;1998.Google Scholar
  53. 53.
    Gruijthuijsen YK, Casarosa P, Kaptein SJF, Broers JLV, Leurs R, Bruggeman CA, Smit MJ, Vink C. The rat cytomegalovirus R33-encoded G protein-coupled receptor signals in a constitutive fashion. J Virol 76:1328–1338;2002.Google Scholar
  54. 54.
    Hideshima T, Chauhan D, Teoh G, Raje N, Treon SP, Tai YT, Shima Y, Anderson KC. Characterization of signaling cascades triggered by human interleukin-6 versus Kaposi's sarcoma-associated herpes virus-encoded viral interleukin 6. Clin Cancer Res 6:1180–1189;2000.Google Scholar
  55. 55.
    Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771;2000.Google Scholar
  56. 56.
    Holst PJ, Rosenkilde MM, Manfra D, Chen S-C, Wiekowski MT, Holst B, Cifire F, Lipp M, Schwartz TW, Lira SA. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity. J Clin Invest 108:1789–1796;2001.Google Scholar
  57. 57.
    Irving BA, Chan AC, Weiss A. Functional characterization of a signal tranducing motif present in the T cell receptor ζ chain. J Exp Med 177:1093–1103;1993.Google Scholar
  58. 58.
    Ishiyama T, Nakamura S, Akimoto Y, Koike M, Tomoyasu S, Murata Y, Sato T, Wakabayashi Y, Chiba S. Immunodeficiency and IL-6 production by peripheral blood monocytes in multicentric Castleman's disease. Br J Haematol 86:483–489;1994.Google Scholar
  59. 59.
    Jenner RG, Alba MM, Boshoff C, Kellam P. Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75:891–902;2001.Google Scholar
  60. 60.
    Jensen KK, Chen S-C, Hipkin W, Wiekowski MT, Schwarz MA, Chou C-C, Simas JP, Alcami A, Lira SA. Disruption of CCL21-induced chemotaxis in vitro and in vivo by M3, a chemokine-binding protein encoded by murine gammaherpesvirus 68. J Virol 77:624–630;2003.Google Scholar
  61. 61.
    Jones KD, Aoki Y, Chang Y, Moore PS, Yarchoan R, Tosato G. Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi's sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood 94:2871–2879;1999.Google Scholar
  62. 62.
    Kaye KM, Izumi KM, Kieff E. Epstein-Barr virus latent membrane protein 1 is essential for B lymphocyte growth transformation. Proc Natl Acad Sci USA 90:9150–9154;1993.Google Scholar
  63. 63.
    Kledal TN, Rosenkilde MM, Coulin F, Simmons G, Johnsen AH, Alouani S, Power CA, Lüttichau HR, Gerstoft J, Clapham PR, Clark-Lewis I, Wells TNC, Schwartz TW. A broadspectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus. Science 277:1656–1659;1997.Google Scholar
  64. 64.
    Kliche S, Nagel W, Kremmer E, Atzler C, Ege A, Knorr T, Koszinowski U, Kolanus W, Hass J. Signaling by human herpesvirus 8kaposin A through direct membrane recruitment ofcytohesin-1. Mol Cell 7:833–843;2001.Google Scholar
  65. 65.
    Lagunoff M, Ganem D. The structure and coding organization of the genomic termini of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8). Virology 236:147–154;1997.Google Scholar
  66. 66.
    Lagunoff M, Lukac DM, Ganem D. Immunoreceptor tyrosine-based motif-dependent signaling by Kaposi's sarcoma-associated herpesvirus K1 protein: Effects on lytic viral replication. J Virol 75:5891–5898;2001.Google Scholar
  67. 67.
    Lagunoff M, Marjeti R, Weiss A, Ganem D. Deregulated transduction by the K1 gene product of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 96:5704–5709;1999.Google Scholar
  68. 68.
    Lee BJ, Koszinowski UH, Sarawar SR, Adler H. A gammaherpesvirus G protein-coupled receptor homologue is required for increased viral replication in response to chemokines and efficient reactivation from latency. J Immunol 170:243–251;2003.Google Scholar
  69. 69.
    Lee BS, Alvarez X, Ishido S, Lackner AA, Jung JU. Inhibition of intracellular transport of B cell antigen receptor complexes by Kaposi's sarcoma-associated herpesvirus K1. J Exp Med 192:11–21;2000.Google Scholar
  70. 70.
    Lee BS, Paulose-Murphy M, Chung Y-H, Connlole M, Zeichner S, Jung JU. Suppression of tetradecanoyl phorbol acetate-induced lytic reactivation of Kaposi's sarcoma-associated herpesvirus by K1 signal transduction. J Virol 76:12185–12199;2002.Google Scholar
  71. 71.
    Lee H, Choi JK, Li M, Kaye K, Kieff E, Jung JU. Role of cellular tumor necrosis factor receptor-associated factors in NFκB activation and lymphocyte transformation by herpesvirus saimiri STP. J Virol 73:3913–3919;1999.Google Scholar
  72. 72.
    Lee H, Guo J, Li M, Choi J-K, DeMaria M, Rosenzweig M, Jung JU. Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi's sarcoma-associated herpesvirus. Mol Cell Biol 18:5219–5228;1998.Google Scholar
  73. 73.
    Lee H, Veazey R. Williams K, Li M, Guo J, Neipel F, Fleckenstein B, Lackner A, Desrosiers RC, Jung JU. Deregulation of cell growth by the K1 gene of Kaposi's sarcoma-associated herpesvirus. Nat Med 4:435–440;1998.Google Scholar
  74. 74.
    Lee H-J, Essani K, Smith GL. The genome of yaba-like disease virus, a yatapoxvirus. Virology 281:170–192;2001.Google Scholar
  75. 75.
    Li H, Nicholas J. Identification of amino acid residues of gp130 signal transducer and gp80 receptor subunit that are involved in ligand binding and signaling by human herpesvirus 8-encoded interleukin-6. J Virol 76:5627–5636;2002.Google Scholar
  76. 76.
    Li H, Komatsu T, Dezube BJ, Kaye KM: The Kaposi's sarcoma-associated herpesvirus K12 transcript from a primary effusion lymphoma contains complex repeat elements, is spliced, and initiates from a novel promoter. J Virol 76:11880–11888;2002.Google Scholar
  77. 77.
    Li H, Wang H, Nicholas J. Detection of direct binding of human herpesvirus 8-encoded interleukin-6 (vIL-6) to both gp130 and IL-6 receptor (IL-6R) and identification of amino acid residues of vIL-6 important for IL-6R-dependent and -independent signaling. J Virol 75:3325–3334;2001.Google Scholar
  78. 78.
    Liu C, Okruzhnov Y, Li H, Nicholas J. Human herpesvirus 8 (HHV-8)-encoded cytokines induce expression of and autocrine signaling by vascular endothelial growth factor (VEGF) in HHV-8-infected primary-effusion lymphoma cell lines and mediate VEGF-independent antiapoptotic effects. J Virol 75:10933–10940;2001.Google Scholar
  79. 79.
    Lowes VL, Ip NY, Wong YH. Integration of signals from receptor tyrosine kinases and G protein-coupled receptors. Neurosignals 11:5–19;2002.Google Scholar
  80. 80.
    Lüttichau HR, Clark-Lewis I, Gerstoft J, Schwartz TW. The herpesvirus 8-encoded chemokine vMIP-II, but not the poxvirus-encoded chemokine MC148, inhibits the CCR10 receptor. Eur. J Immunol 31:1217–1220;2001.Google Scholar
  81. 81.
    Magaw AG, Rapaport D, Avidor B, Frenkel N, Davison AJ. The DNA sequence of the RK strain of human herpesvirus 7. Virology 244:119–132;1998.Google Scholar
  82. 82.
    McCaughan GW, Clark MJ, Barclay AN. Characterization of the human homolog of rat MRC OX-2 membrane glycoprotein. Immunogenetics 25:329–335;1987.Google Scholar
  83. 82a.
    Miles SA, Rezai AR, Salazar-Gonzalez JF, Vander Meyden M, Stevens RH, Logan DM, Mitsuyasu RT, Taga T, Hirano T, Kishimoto T, Marzinez-Maza D. AIDS Kaposi sarcomaderived cells produce and respond to interleukin 6. Proc Natl Acad Sci USA 87:4068–4072;1990.Google Scholar
  84. 83.
    Miller CL, Burkhardt AL, Lee JH, Stealey B, Longnecker R, Bolen JB, Kieff E. Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 2:155–166;1995.Google Scholar
  85. 84.
    Miller CL, Lee JH, Kieff E, Longnecker R. An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci USA 91:772–776;1994.Google Scholar
  86. 85.
    Molden J, Chang Y, You Y, Moore PS, Goldsmith MA. A Kaposi's sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 subunit. J Biol Chem 272:19625–19631;1997.Google Scholar
  87. 86.
    Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y, Li Y, Ray PE, Gutkind SJ. Endothelial infection with KSHV genes in vivo reveals thevGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3:23–36;2003.Google Scholar
  88. 87.
    Montaner S, Sodhi A, Pece S, Mesri EA, Gutkind JS. The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res 61:2641–2648;2001.Google Scholar
  89. 88.
    Moore PS, Boshoff C, Weiss RA, Chang Y: Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274:1739–1744;1996.Google Scholar
  90. 89.
    Muralidhar S, Pumfery AM, Hassani M, Sadaie MR, Azumi N, Kishishita M, Brady JN, Doniger J, Medveczky P, Rosenthal LJ. Identification of kaposin (open reading frame K12) as a human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) transforming gene. J Virol 72:4980–4988;1998.Google Scholar
  91. 90.
    Muralidhar S, Veytsmann G, Chandran B, Ablashi D, Doniger J, Rosenthal LJ. Characterization of the human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) oncogene, Kaposin (ORF K12). J Clin Virol 16:203–213;2000.Google Scholar
  92. 91.
    Murthy SC, Trimble J.J, Desrosiers RC. Deletion mutants of herpesvirus saimiri define an open reading frame necessary for transformation. J Virol 63:3307–3314;1989.Google Scholar
  93. 92.
    Naor Z, Benard O, Seger R. Activation of MAPK cascades by G-protein-coupled receptors: The case of gonadotropin-releasing hormone receptor. Trends Endocrin Met 3:91–99;2000.Google Scholar
  94. 93.
    Neipel F, Albrecht J-C, Fleckenstein B. Cell homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: Determinants of its pathogenicity? J Virol 71:4187–4192;1997.Google Scholar
  95. 94.
    Nicholas J. Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J Virol 70:5975–5989;1996.Google Scholar
  96. 95.
    Nicholas J. Evolutionary aspects of oncogenic herpesviruses. Mol Pathol 53:222–237;2000.Google Scholar
  97. 96.
    Nicholas J, Cameron KR, Honess RW. Herpesvirus saimiri encodes homologues of G-protein coupled receptors and cyclins. Nature 355:362–365;1992.Google Scholar
  98. 97.
    Nicholas J, Ruvolo VR, Burns W.H, Sandford G, Wan X, Ciufo D, Hendrickson SB, Guo HG, Hayward GS, Reitz MS. Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat Med 3:287–292;1997.Google Scholar
  99. 98.
    Nicholas J, Ruvolo V, Zong J, Ciufo D, Guo H-G, Reitz MS, Hayward GS. A single 13-kilobase divergent locus in the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome contains nine open reading frames that are homologous to or closely related to cellular proteins. J Virol 71:1963–1974;1997.Google Scholar
  100. 99.
    Osborne J, Moore PS, Chang Y: KSHV-encoded viral IL-6 activates multiple human IL-6 signaling pathways. Humm Immunol 60:921–927;1999.Google Scholar
  101. 100.
    Parravicini C, Corbellino M, Paulli M, Magrini U, Lazzarino M, Moore PS, Chang Y: Expression of a virus-derived cytokine, KSHV vIL-6, in HIV-seronegative Castleman's disease. Am J Pathol 151:1517–1522;1997.Google Scholar
  102. 101.
    Pati S, Cavrois M, Guo H-G, Foulke JS, Kim J, Feldman RA, Reitz M: Activation of NFκB by the human herpesvirus 8 chemokine receptor ORF74: Evidence for a paracrine model of Kaposi's sarcoma pathogenesis. J Virol 75:8660–8673;2001.Google Scholar
  103. 102.
    Paulose-Murphy M, Nguyen-Hoi H, Xiang C, Chen Y, Gillim L, Yarchoan R, Meltzer P, Bittner M, Trent J, Zeichner S. Transcription program of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus). J Virol 75:4843–4853;2001.Google Scholar
  104. 103.
    Penfold ME, Dairaghi DJ, Duke GM, Saederup N, Mocarski ES, Kemble GW, Schall TJ. Cytomegalovirus encodes a potent alpha chemokine. Proc Natl Acad Sci USA 17:9839–9844;1999.Google Scholar
  105. 104.
    Poole LJ, Zong J-C, Ciufo DM, Alcendor DJ, Cannon JS, Ambinder R, Orenstein JM, Reitz MS, Hayward GS. Comparison of genetic variability at multiple loci across the genomes of the major subtypes of Kaposi's sarcoma-associated herpesvirus reveals evidence for recombination and for two distinct types of open reading frame K15 alleles at the right-hand end. J Virol 73:6646–6660;1999.Google Scholar
  106. 105.
    Prakash O, Tang Z-Y, Peng X, Coleman R, Gill J, Farr G, Samaniego F. Tumorigenesis and aberrant signaling in transgenic mice expressing the human herpesvirus-8 K1 gene. J Nat Cancer Inst 94:926–935;2002.Google Scholar
  107. 106.
    Preston S, Wright GJ, Starr K, Barclay AN, Brown MH. The leukocyte/neuron cell surface antigen OX2 binds to a ligand on macrophages. Eur J Immunol 27:1911–1918;1997.Google Scholar
  108. 107.
    Ragheb R, Abrahams S, Beecroft R, Hu J, Ni J, Ramakrishna V, Yu G, Gorczynski RM: Preparation and functional properties of monoclonal antibodies to human, mouse and rat OX-2. Immunol. Lett 68:311–315;1999.Google Scholar
  109. 108.
    Rivailler P, Cho Y-G, Wang F. Complete genomic sequence of an Epstein-Barr virus-related herpsvirus naturally infecting a new world primate: A defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 76:12055–12068;2002.Google Scholar
  110. 109.
    Rosenkilde MM, Kledal TN, Bräuner-Osborne H, Schwartz TW. Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, ORF-74. J Biol Chem 274:956–961;1999.Google Scholar
  111. 110.
    Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddelena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, Moore PS. Nucleotide sequence of the Kaposi's sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 93:14862–14867;1996.Google Scholar
  112. 111.
    Sadler R, Wu L, Forghani B, Renne R, Zhong W, Herndier B, Ganem D. A complex transcriptional program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi's sarcoma-associated herpesvirus. J Virol 73:5722–5730;1999.Google Scholar
  113. 112.
    Saederup N, Mocarski ES. Fatal attraction: Cytomegalovirus-encoded chemokine homologs. Curr Top Microbiol 269:235–256;2002.Google Scholar
  114. 113.
    Saederup N, Lin YC, Dairaghi DJ, Schall TJ, Mocarski ES. Cytomegalovirus-encoded beta chemokine promotes monocyte-associated viremia in the host. Proc Natl Acad Sci USA 14:10881–10886;1999.Google Scholar
  115. 114.
    Samaniego F, Pati S, Karp J, Prakash O, Bose D. Human herpesvirus 8 K1-associated nuclear factor-kappa B-dependent promoter activity: Role in Kaposi's sarcoma inflammation? J Natl Cancer Inst Monogr 28:15–23;2001.Google Scholar
  116. 115.
    Schwarz M, Murphy PM: 2001. Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-κB and induces proinflammatory cytokine and chemokine production via a C-terminal signalling determinant. J Immunol 167:505–513;2001.Google Scholar
  117. 116.
    Searles RP, Bergquam EP, Axthelm MK, Wong SW. Sequence and genomic analysis of a rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 73:3040–3053;1999.Google Scholar
  118. 117.
    Shan L, Qiao X, Oldham E, Catron D, Kaminski H, Lundell D, Zlotnik A, Gustafson E, Hedrick JA. Identification of viral macrophage inflammatory protein (vMIP)-II as a ligand for GPR5/XCR1. Biochem Biophys Res Commun 268:938–941;2000.Google Scholar
  119. 118.
    Sharp TV, Wang H-W, Koumi A, Hollyman D, Endo Y, Ye H, Du M-Q, Boshoff C. K15 protein of Kaposi's sarcoma-associated herpesvirus is latently expressed and binds to HAX-1, a protein with antiapoptotic function. J Virol 76:802–816;2002.Google Scholar
  120. 119.
    Shepard LW, Yang M, Xie P, Browning DD, Voyno-Yasenetskaya T, Kozasa T, Ye RE. Constitutive activation of NF-κB and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus involve Gα13 and RhoA. J Biol Chem 276:45979–45987;2001.Google Scholar
  121. 120.
    Shi C.-S., Kehrl JH. PYK2 links Gqα and G13α signalling to NF-κB activation. J Biol Chem 276:31845–31850;2001.Google Scholar
  122. 121.
    Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, Gutkind JS. The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting ion hypoxia-inducible factor 1α. Cancer Res 60:4873–4880;2000.Google Scholar
  123. 122.
    Sozzani S, Luini W, Bianchi G, Allavena P, Wells TN, Napolitano M, Bernardini G, Vecchi A, D'Ambrosio D, Mazzeo D, Sinigaglia F, Santoni A, Maggi E, Romagnani S, Mantovani A. The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant. Blood 92:4036–4039;1998.Google Scholar
  124. 123.
    Staskus KA, Sun R, Miller G, Racz P, Jaslowski A, Metroka C, Brett-Smith H, Haase AT. Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. J Virol 73:4181–4187;1999.Google Scholar
  125. 124.
    Stine JT, Wood C, Hill M, Epp A, Raport CJ, Schweickart VL, Endo Y, Sasaki T, Simmons G, Boshoff C, Clapham P, Chang Y, Moore P, Gray PW, Chantry D. KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood 95:1151–1157;2000.Google Scholar
  126. 125.
    Talbot SJ, Weiss RA, Kellam P, Boshoff C. Transcriptional analysis of human herpesvirus-8 open reading frames 71, 72, 73, K14, and 74 in a primary effusion lymphoma cell line. Virology 257:84–94;1999.Google Scholar
  127. 126.
    Telford EA, Watson MS, Aird HC, Perry J, Davison AJ. The DNA sequence of equine herpesvirus 2. J Mol Biol 249:520–528;1995.Google Scholar
  128. 127.
    Tomkowicz B, Singh SP, Cartas M, Spinivasan A. Human herpesvirus-8 encoded kaposin: Subcellular localization using immunofluorescence and biochemical approaches. DNA Cell Biol. 21:151–162;2002.Google Scholar
  129. 128.
    Van Berkel V, Preiter K, Virgin HW, Speck SH. Identification and initial characterization of the murine gammaherpesvirus 68 gene M3, encoding an abundantly secreted protein. J Virol 73:4524–4529;1999.Google Scholar
  130. 129.
    Vink C, Beuken E, Bruggeman CA. Complete DNA sequence of the rat cytomegalovirus genome. J Virol 74:7656–7665;2000.Google Scholar
  131. 130.
    Wakeling MN, Roy DJ, Nash AA, Stewart JP. Characterization of the murine gammaherpesvirus 68 ORF74 product: A novel oncogene G protein-coupled receptor. J Gen Virol 82:1187–1197;2001.Google Scholar
  132. 131.
    Waldoer M, Kledal TN, Farrell H, Schwartz TW. Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol 76:8161–8168;2002.Google Scholar
  133. 132.
    Wan X, Wang H, Nicholas J. Human herpesvirus 8 interleukin-6 (vIL-6) signals through gp130 but has structural and receptor-binding properties distinct from those of human IL-6. J Virol 73:8268–8278;1999.Google Scholar
  134. 133.
    Webb M, Barclay AN. Localisation of the MRC OX-2 glycoprotein on the surfaces of neurones. J Neurochem 43:1061–1067;1984.Google Scholar
  135. 134.
    Weber K.SC, Gröne H-J, Röcken M, Klier C, Gu S, Wank R, Proudfoot AEI, Nelson PJ, Weber C. Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II. Eur J Immunol 31:2458–2466;2001.Google Scholar
  136. 135.
    Willer DO, McFadden G, Evans DH. The complete genome sequence of Shope (rabbit) fibroma virus. Virology 264:319–343;1999.Google Scholar
  137. 136.
    Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgewick JD, Brown MH, Barclay AN. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13:233–242;2000.Google Scholar
  138. 137.
    Yang T-Y, Chen S-C, Leach MW, Manfra D, Homey B, Wiekowski M, Sullivan L, Jenh C-H, Narula SK, Chensue SW, Lira SA. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. 2000. J Exp Med 191:445–453;2000.Google Scholar
  139. 138.
    Ye RD. Regulation of nuclear factor κB activation by G-protein-coupled receptors. J Leuk Biol 70:839–848;2001.Google Scholar
  140. 139.
    Yoshizaki K, Matsuda T, Nishimoto N, Kuritani T, Taeho L, Aozasa K, Nakahata T, Kawai H, Tagoh H, Komori T, Kishimoto S, Hirano T, Kishimoto T. Pathogenic significance of interleukin-6 (IL-6/BSF-2) in Castleman's disease. Blood 74:1360–1367;1989.Google Scholar

Copyright information

© National Science Council 2003

Authors and Affiliations

  • John Nicholas
    • 1
  1. 1.Molecular Virology LaboratoriesSidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreUSA

Personalised recommendations