Journal of Biomedical Science

, Volume 10, Issue 2, pp 228–241 | Cite as

Characterization and functionality of cell surface molecules on human mesenchymal stem cells

  • Manas K. Majumdar
  • Michele Keane-Moore
  • Diana Buyaner
  • Wayne B. Hardy
  • Mark A. Moorman
  • Kevin R. McIntosh
  • Joseph D. Mosca
Original Paper


We have characterized adhesion molecules on the surface of multipotential human mesenchymal stem cells (hMSCs) and identified molecules whose ligands are present on mature hematopoietic cells. Flow cytometric analysis of hMSCs identified the expression of integrins: α1, α2, α3, α5, α6, αv, β1, β3, and β4, in addition to ICAM-1, ICAM-2, VCAM-1, CD72, and LFA-3. Exposure of hMSCs to IL-1α, TNFα or IFNγ up-modulated ICAM-1 surface expression, whereas only IFNγ increased both HLA-class I and -class II molecules on the cell surface. Whole cell-binding assays between the hMSCs and hematopoietic cell lines showed that T lymphocytic lines bound hMSCs with higher affinity than lines of either B lymphocytes or those of myeloid lineage. Experiments using autologous T lymphocytes isolated from peripheral blood mononuclear cells showed that hMSCs exhibited increased affinity for activated T-lymphocytes compared to resting T cells by quantitative whole cell binding and rosetting assays. Flow cytometric analysis of rosetted cells demonstrated that both CD4+ and CD8+ cells bound to hMSCs. To determine the functional significance of these findings, we tested the ability of hMSCs to present antigen to T lymphocytes. hMSCs pulsed with tetanus toxoid stimulated proliferation and cytokine production (IL-4, IL-10, and IFNγ) in a tetanus-toxoid-specific T cell line. Maximal cytokine production correlated with maximal antigen-dependent proliferation. These data demonstrate physiological outcome as a consequence of interactions between hMSCs and human hematopoietic lineage cells, suggesting a role for hMSCs in vivo to influence both hematopoietic and immune function(s).

Key Words

Mesenchymal stem cells Antigen presentation T lymphocytes Hematopoietic interactions Immune function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson G, Jenkinson EJ, Moore NC, Owen JJT. MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 362:70–74;1993.Google Scholar
  2. 2.
    Beresfords JN. Osteogenic stem cell and the stromal system of bone and marrow. Clin Orthop 240:270–276;1989.Google Scholar
  3. 3.
    Bierer BE, Burakoff SJ. T cell receptors: Adhesion and signaling. Adv Cancer Res 56:49–54;1991.Google Scholar
  4. 4.
    Bruder SP, Horwitz MC, Mosca JD, Haynesworth SE. Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 21:225–230;1997.Google Scholar
  5. 5.
    Bruder SP, Ricalton NS, Boynton RE, Connolly TJ, Jaiswal N, Zaia J, Barry FP. Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation. J Bone Miner Res 13:655–660;1998.Google Scholar
  6. 6.
    Caplan AI. Mesenchymal stem cells. J Orthop Res 9:641–646;1991.Google Scholar
  7. 7.
    Clark EA, Ledbetter JA. How B and T cells talk to each other. Nature 367:425–429;1994.Google Scholar
  8. 8.
    Dempster DW, Moonga BS, Stein LS, Horbert WR, Antakly T. Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis. J Endocrinol 154:397–401;1997.Google Scholar
  9. 9.
    Dorskind K. Regulation of hematopoiesis by bone marrow stromal cells and their products. Annu Rev Immunol 8:11–25;1990.Google Scholar
  10. 10.
    Epstein S. Mechanism of action of immunosuppressant agents producing bone loss: From basic research to clinical relevance. Bone and the Hematopoietic and Immune Systems Workshop, National Institutes of Health, Bethesda, 1997.Google Scholar
  11. 11.
    Felsenfeld DP, Choquet D, Sheetz MP. Ligand binding regulates the directed movement of beta-1 integrins on fibroblasts. Nature 383:438–441;1996.Google Scholar
  12. 12.
    Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–625;1994.Google Scholar
  13. 13.
    Goelz S, Kumar R, Potvin B, Sundaram S, Brickelmaier M, Stanley P. Differential expression of an E-selectin ligand (Slex) by two Chinese hamster ovary cell lines transfected with the same alpha (1,3)-fucosyltransferase gene (ELFT). J Biol Chem 269:1033–1039;1994.Google Scholar
  14. 14.
    Gronthos S, Graves SE, Ohta S, Simmons PJ. The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84:4164–4169;1994.Google Scholar
  15. 15.
    Haraldsen G, Kvale D, Lien B, Farstad IN, Brandtzaeg P. Cytokine-regulated expression of E-selectin, intracellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human intestinal microvascular endothelial cells. J Immunol 156:2558–2563;1996.Google Scholar
  16. 16.
    Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from the human marrow. Bone 13:81–87;1992.Google Scholar
  17. 17.
    Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human-derived mesenchymal progenitor cells in vitro: Effects of dexamethasone and IL-1α. J Cell Physiol 166:585–591;1996.Google Scholar
  18. 18.
    Henseleit U, Steinbrink K, Sunderkotter C, Goebeler M, Roth J, Sorg C. Expression of murine VCAM-1 in vitro and in different models of inflammation in vivo: Correlation with emigration of monocytes. Exp Dermatol 3:249–253;1994.Google Scholar
  19. 19.
    Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–20;1992.Google Scholar
  20. 20.
    Kansas GS. Selectins and their ligands: Current concepts and controversies. Blood 88:3259–3265;1996.Google Scholar
  21. 21.
    Kornberg LJ, Earp HS, Turner CE, Prockop C, Juliano RL. Signal transduction by integrins: Increased protein tyrosine phosphorylation caused by clustering of β1 integrins. Proc Natl Acad Sci USA 88:8392–8396;1991.Google Scholar
  22. 22.
    Lennon DP, Haynesworth SE, Bruder SP, Jaiswal N, Caplan AI. Development of a serum screen for mesenchymal progenitor cells from bone marrow. In Vitro Cell Dev Biol 32:602–607;1996.Google Scholar
  23. 23.
    Levesque J-P, Leavesley DI, Niutta S, Vadas M, Simmons PJ. Cytokines increase human hematopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins. J Exp Med 181:1805–1809;1995.Google Scholar
  24. 24.
    Levesque J-P, Haylock DN, Simmons PJ. Cytokine regulation of proliferation and cell adhesion are correlated events in human CD34+ hematopoietic progenitors. Blood 88:1168–1174;1996.Google Scholar
  25. 25.
    Liesvield JL, Dipersio JF, Abboud CN. Integrin and adhesive receptors in normal and leukemic CD34+ progenitor cells: Potential regulatory checkpoint for cellular traffic. Leuk Lymphoma 14:19–24;1994.Google Scholar
  26. 26.
    Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of human mesenchymal stem cells from marrow. Tissue Eng 4:415–420;1998.Google Scholar
  27. 27.
    Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–63;1998.Google Scholar
  28. 28.
    Majumdar MK, Banks V, Peluso DP, Morris EA. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 185:98–106;2000.Google Scholar
  29. 29.
    Matsuyama T, Yamada A, Kay J, Yamada KM, Akiyama SK, Schlossman SF, Morimoto C. Activation of CD4 cells by fibronectin and anti-CD3 antibody. A synergistic effect mediated by the VLA-5 fibronectin receptor complex. J Exp Med 170:1133–1137;1989.Google Scholar
  30. 30.
    Meredith JE, Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor. Mol Biol Cell 4:953–959;1993.Google Scholar
  31. 31.
    Miyake K, Weissman IL, Greenberger JS, Kincade PW. Evidence for a role of the integrin VLA-4 in lympho-hematopoiesis. J Exp Med 173:599–605;1991Google Scholar
  32. 32.
    Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 88:287–293;1997.Google Scholar
  33. 33.
    Myers CL, Wertheimer SJ, Schembri-King J, Parks T, Wallace RW. Induction of ICAM-1 by TNF-α, IL-1β, and LPS in human endothelial cells after down-regulation of PKC. Am J Physiol 262:C767–771;1992.Google Scholar
  34. 34.
    Nojima Y, Humphries MJ, Mould AP, Komoriya P, Yamada KM, Schlossman SF, Morimoto C. VLA-4 mediates CD3-dependent CD4+ T cell activation via the CS1 alternatively spliced domain of fibronectin. J Exp Med 172:1185–1190;1990.Google Scholar
  35. 35.
    Pittenger MF, Mackay AM, Beck SC. Human mesenchymal stem cells can be directed into chondrocytes, adipocytes and osteocytes. Mol Biol Cell 7:305–309;1996.Google Scholar
  36. 36.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147;1999.Google Scholar
  37. 37.
    Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–75;1997.Google Scholar
  38. 38.
    Sadahira Y, Yoshino T, Monobe Y. Very late activation antigen 4-vascular cell adhesion molecule 1 interaction is involved in the formation of erythroblastic islands. J Exp Med 181:411–416;1995.Google Scholar
  39. 39.
    Salomon DR, Crisa L, Mojcik CF, Ishii JK, Klier G, Shevach EM. Vascular cell adhesion molecule-1 is expressed by cortical thymic epithelial cells and mediates thymocyte adhesion. Implications for the function of α4β1 (VLA4) integrin in T-cell development. Blood 89:2461–2466;1997.Google Scholar
  40. 40.
    Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Ann Rev Cell Biol 11:549–555;1995.Google Scholar
  41. 41.
    Shimizu Y, Van Seventer GA, Horgan KJ, Shaw S. Regulated expression and binding of three VLA (beta 1) integrin receptors on T cells. Nature 345:250–254;1990.Google Scholar
  42. 42.
    Shimizu Y, Van Seventer GA, Horgan KJ, Shaw S. Roles of adhesion molecules in T cell recognition: Fundamental similarities between four integrins on resting human T cells (LFA-1, VLA-4, VLA-5, VLA-6) in expression, binding and costimulation. Immunol Rev 114:109–118;1990Google Scholar
  43. 43.
    Simmons PJ, Mesinosky B, Longenecker BM, Berenson R, Torok-Storb B, Gallatin WM. Vascular-cell adhesion molecule-1 expression by bone marrow stromal cells mediated the binding of hematopoietic progenitor cells. Blood 80:388–394;1992.Google Scholar
  44. 44.
    Springer TA. Adhesion receptors of the immune system. Nature 346:425–429;1990.Google Scholar
  45. 45.
    Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature 383:441–444;1996.Google Scholar
  46. 46.
    Teixido J, Hemler ME, Greenberger JS, Anklessaria P. Role of β1 and β2 integrins in the adhesion of human CD34hi cells to bone marrow stroma. J Clin Invest 90:358–362;1993.Google Scholar
  47. 47.
    Thiede MA, Majumdar M, Mosca JD. Antibody-isolation of pluripotent human marrow stromal progenitor cells that support in vitro hematopoiesis by CD34+ bone marrow cells. Blood 88:186a;1996.Google Scholar
  48. 48.
    Tobias J, Chambers TJ. Glucocorticoids impair bone resorptive activity and viability of osteoclasts disaggregated from neonatal rat long bones. Endocrinology 125:1290–1295;1989.Google Scholar
  49. 49.
    Van Seventer GA, Newman W, Shimizu Y, Nutman TB, Tanaka Y, Horgan KJ, Gopal TV, Ennis E, O'Sullivan D, Grey H, Shaw S. Analysis of T cell stimulation by superantigen plus MHC class II molecules or by anti-CD3 monoclonal antibody: costimulation by purified adhesion ligands VCAM-1, ICAM-1 but not ELAM-1. J Exp Med 174:901–907;1991.Google Scholar
  50. 50.
    Wahl SM, Allen JB, Weeks BS, Wong HL, Klotman PE. Transforming growth factor β enhances integrin expression and type IV collagenase secretion in human monocytes. Proc Natl Acad Sci USA 90:4577–4781;1993.Google Scholar
  51. 51.
    Wong D, Dorovini-Zis K. Expression of vascular cell adhesion molecule-1 (VCAM-1) by human brain microvessel endothelial cells in primary culture. Microvasc Res 49:325–330;1995.Google Scholar
  52. 52.
    Young RG, Butler DL, Weber W, Capan AI, Gordon SL, Fink DJ. Use of mesenchymal stem cell-in a collagen matrix for Achilles tendon repair. J Orthop Res 16:406–411;1998.Google Scholar

Copyright information

© National Science Council 2003

Authors and Affiliations

  • Manas K. Majumdar
    • 1
  • Michele Keane-Moore
    • 1
  • Diana Buyaner
    • 1
  • Wayne B. Hardy
    • 1
  • Mark A. Moorman
    • 1
  • Kevin R. McIntosh
    • 1
  • Joseph D. Mosca
    • 1
    • 2
  1. 1.Osiris Therapeutics, Inc.BaltimoreUSA
  2. 2.Mymetics CorporationAnnapolisUSA

Personalised recommendations