Journal of Biomedical Science

, Volume 10, Issue 1, pp 136–145 | Cite as

Induction of nitric oxide synthase in raw 264.7 macrophages by lipoteichoic acid fromStaphylococcus aureus: Involvement of protein kinase C- and nuclear factor-kB-dependent mechanisms

  • Chen-Tzu Kuo
  • Ling-Ling Chiang
  • Chun-Nin Lee
  • Ming-Chih Yu
  • Kuan-Jen Bai
  • Horng-Mo Lee
  • Wen-Sen Lee
  • Joen-Rong Sheu
  • Chien-Huang Lin
Original Paper


This study investigates the signaling pathway involved in inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) release caused byStaphylococcus aureus lipoteichoic acid (LTA) in RAW 264.7 macrophages. A phosphatidylcholine-phospholipase C (PC-PLC) inhibitor (D-609) and a phosphatidylinositol-phospholipase C (PI-PLC) inhibitor (U-73122) attenuated LTA-induced iNOS expression and NO release. Two PKC inhibitors (Go 6976 and Ro 31-8220), an NF-κB inhibitor (pyrrolidine dithiocarbamate; PDTC), and long-term (24 h) 12-phorbol-13-myristate acetate (PMA) treatment each also inhibited LTA-induced iNOS expression and NO release. Treatment of cells with LTA caused an increase in PKC activity; this stimulatory effect was inhibited by D-609, U-73122, or Ro 31-8220. Stimulation of cells with LTA caused IκB-α phosphorylation and IκB-α degradation in the cytosol, and translocation of p65 and p50 NF-κB from the cytosol to the nucleus. Treatment of cells with LTA caused NF-κB activation by detecting the formation of NF-κB-specific DNA-protein complexes in the nucleus; this effect was inhibited by Go 6976, Ro 31-8220, long-term PMA treatment, PDTC,L-1-tosylamido-2-phenylethyl chloromethyl ketone (TPCK), and calpain inhibitor I. These results suggest that LTA might activate PC-PLC and PI-PLC to induce PKC activation, which in turn initiates NF-κB activation, and finally induces iNOS expression and NO release in RAW 264.7 macrophages.

Key Words

Lipoteichoic acid Inducible nitric oxide synthase Nitric oxide Protein kinase C NF-κB RAW 264.7 macrophages 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auguet M, Lonchampt MO, Delaflotte S, Goulin-Schulz J, Chabrier PE, Braquet P. Induction of nitric oxide synthase by lipoteichoic acid fromStaphylococcus aureus in vascular smooth muscle cells. FEBS Lett 297:183–185;1992.Google Scholar
  2. 2.
    Bhakdi S, Klonisch T, Nuber P, Fischer W. Stimulation of monokine production by lipoteichoic acids. Infect Immunol 59:4614–4620;1991.Google Scholar
  3. 3.
    Bleasdale JE, Thakur NR, Gremban RS, Bundy GL, Fitzpatrick FA, Smith RJ, Bunting S. Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils. J Pharmacol Exp Ther 255:756–768;1990.Google Scholar
  4. 4.
    Bone RC. Gram-positive organisms and sepsis. Arch Intern Med 154:26–34;1994.Google Scholar
  5. 5.
    Chartrain NA, Geller DA, Koty PP, Sitrin NF, Nussler A K, Hoffman EP, Billiar TR, Hutchinson NI, Mudgett JS. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem 269:6765–6772;1994.Google Scholar
  6. 6.
    Chen CC, Wang JK. p38 but not p44/42 mitogen activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol Pharmacol 55:481–488;1999.Google Scholar
  7. 7.
    Chen CC, Wang JK, Lin SB. Antisense oligonucleotides targeting protein kinase C-α, -βI, or -δ but not η inhibit lipopolysaccharide-induced nitric oxide synthase expression in RAW 264.7 macrophages: Involvement of a nuclear factor κB-dependent mechanism. J Immunol 161:6202–6214;1998.Google Scholar
  8. 8.
    Cunha FQ, Moss DW, Leal LMCC, Moncada S, Liew FY. Induction of macrophage parasiticidal activity byStaphylococcus aureus and exotoxins through the nitric oxide synthase pathway. Immunology 78:563–567;1993.Google Scholar
  9. 9.
    De Kimpe SJ, Hunter ML, Bryant CE, Thiemermann C, Vane JR. Delayed circulation failure due to the induction of nitric oxide synthase by lipoteichoic acid fromStaphylococcus aureus in anesthetized rats. Br J Pharmacol 114:1317–1323;1995.Google Scholar
  10. 10.
    Elgavish A. NF-kappa B activation mediates the response of a subpopulation of basal uroepithelial cells to a cell wall component ofEnterococcus faecalis. J Cell Physiol 182:232–238;2000.Google Scholar
  11. 11.
    Exton JH. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta 1212:26–42;1994.Google Scholar
  12. 12.
    Hattor Y, Kasai K, Akimoto K, Thiemermann C. Induction of NO synthesis by lipoteichoic acid fromStaphylococcus aureus in J774 macrophages: Involvement of a CD14-dependent pathway. Biochem Biophys Res Commun 233:375–379;1997.Google Scholar
  13. 13.
    Hug H, Sarre TF. Protein kinase C isoenzymes: Divergence in signal transduction? Biochem J 291:329–343;1993.Google Scholar
  14. 14.
    Jaffrey SR, Snyder SH. Nitric oxide: A neural messenger. Annu Rev Cell Dev Biol 11:417–440;1995.Google Scholar
  15. 15.
    Kengatharan M, De Kimpe SJ, Thiemermann C. Analysis of the signal transduction in the induction of nitric oxide synthase by lipoteichoic acid in macrophages. Br J Pharmacol 117:1163–1170;1996.Google Scholar
  16. 16.
    Li H, Oehrlein SA, Wallerath T, Ihrig-Biedert I, Wohlfart P, Ulshofer T, Jessen T, Herget T, Forstermann U, Kleinert H. Activation of protein kinase C α and/or ε enhances transcription of the human endothelial nitric oxide synthase gene. Mol Pharmacol 53:630–637;1998.Google Scholar
  17. 17.
    Lin CH, Sheu SY, Lee HM, Ho YS, Lee WS, Ko WC, Sheu JR. Involvement of protein kinase C-γ in IL-1β-induced cyclooxygenase-2 expression in human pulmonary epithelial cells. Mol Pharmacol 57:36–43;2000.Google Scholar
  18. 18.
    Lowenstein CJ, Alley EW, Raval P, Snowman AM, Synder SH, Russell SW, Murphy WJ. Macrophage nitric oxide synthase gene: Two upstream regions mediate induction by interferon-γ and lipopolysaccharide. Proc Natl Acad Sci USA 90:9730–9734;1993.Google Scholar
  19. 19.
    Mattsson E, Verhage L, Rollof J, Fleer A, Verhoef J, Vandijk H. Peptidoglycan and teichoic acid fromStaphylococcus epidermidis stimulate human monocytes to release tumor necrosis factor-α, interleukin-1β and interleukin-6. FEMS Immunol Med Microbiol 7:281–287;1993.Google Scholar
  20. 20.
    Moncada SR, Palmer MJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142;1991.Google Scholar
  21. 21.
    Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064;1992.Google Scholar
  22. 22.
    Nathan C, Xie QW. Nitric oxide synthases: Roles, tolls, and controls. Cell 78:915–918;1994.Google Scholar
  23. 23.
    Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614;1992.Google Scholar
  24. 24.
    Roff M, Thompson J, Rodriguez MS, Jacque JM, Baleux F, Arenzana Seisdeos F, Hay RT. Role of IκB-α ubiquitination in signal-induced activation of NF-κB in vivo. J Biol Chem 271:7844–7850;1996.Google Scholar
  25. 25.
    Scherer DC, Brokman JA, Chen Z, Maniatis T, Ballard DW. Signal-induced IκB-α degradation requires site-specific ubiquitination. Proc Natl Acad Sci USA 92:11259–11263;1995.Google Scholar
  26. 26.
    Schutz S, Potthoff K, Machleidt T, Berkovic D, Weigmann K, Kronke M. TNF activate NF-κB by phosphatidylcholine-specific phospholipase C-induced ‘acidic’ sphingomyelin breakdown. Cell 71:765–776;1992.Google Scholar
  27. 27.
    Schwandner R, Daiarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor-2. J Biol Chem 274:17406–17409;1999.Google Scholar
  28. 28.
    Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451;1999.Google Scholar
  29. 29.
    Thanos D, Maniatis T. NF-κB: A lesson in family values. Cell 80:529–532;1995.Google Scholar
  30. 30.
    Thiemermann C. The role of arginine: Nitric oxide pathway in circulatory shock. Adv Pharmacol 28:45–79; 1994.Google Scholar
  31. 31.
    Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13:437–57;1995.Google Scholar
  32. 32.
    Weisz A, Oguchi S, Cicatiello L, Esimu H. Dual mechanism for the control of inducible-type NO synthase gene expression in macrophages during activation by interferon-γ and bacterial lipopolysaccharide. J Biol Chem 269:8324–8333;1994.Google Scholar
  33. 33.
    Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14: A receptor for complexes of lipopolysaccharides (LPS) and LPS binding protein. Science 249:1431–1433;1990.Google Scholar
  34. 34.
    Xie Q-W, Wishnan R, Nathan C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon γ and bacterial lipopolysaccharide. J Exp Med 177:1779–1784;1993.Google Scholar

Copyright information

© National Science Council 2003

Authors and Affiliations

  • Chen-Tzu Kuo
    • 1
  • Ling-Ling Chiang
    • 4
  • Chun-Nin Lee
    • 2
  • Ming-Chih Yu
    • 2
  • Kuan-Jen Bai
    • 2
  • Horng-Mo Lee
    • 1
  • Wen-Sen Lee
    • 3
  • Joen-Rong Sheu
    • 3
  • Chien-Huang Lin
    • 1
    • 4
  1. 1.Graduate Institute of Biomedical TechnologyTaiwan, ROC
  2. 2.Department of Thoracic MedicineTaipei Medical University Affiliated Wang-Fang HospitalTaiwan, ROC
  3. 3.Graduate Institute of Medical SciencesTaipei Medical UniversityTaipeiTaiwan, ROC
  4. 4.School of Respiratory TherapyTaipei Medical UniversityTaipeiTaiwan (ROC)

Personalised recommendations