Georgian Mathematical Journal

, Volume 2, Issue 4, pp 419–424 | Cite as

Global dimensions of subidealizer rings

  • John Koker


Recently, there have been many results which show that the global dimension of certain rings can be computed using a proper subclass of the cyclic modules, e.g., the simple modules. In this paper we view calculating global dimensions in this fashion as a property of a ring and show that this is a property which transfers to the ring's idealizer and subidealizer ring.

1991 Mathematics Subject Classification

16A60 16A55 16A33 

Key words and phrases

Idealizer of an ideal subidealizer of an ideal α-proper ring Krull dimension global dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. Rotman, An introduction to homological algebra.Academic Press, New York, 1979.Google Scholar
  2. 2.
    S. M. Bhatwadekar, On the global dimension of some filtered algebras.J. London Math. Soc. 209(1970), 65–85.Google Scholar
  3. 3.
    K. R. Goodearl, On the global dimension of residue rings II.Trans. Amer. Math. Soc. 209(1970), 65–85.Google Scholar
  4. 4.
    K. R. Goodearl, Global dimension of differential operator rings IV-simple modules.Forum Math. 1(1989), 185–200.Google Scholar
  5. 5.
    J. Koker, Global dimension of rings with Krull dimension.Comm. Algebra 10(1992), 2863–2876.Google Scholar
  6. 6.
    J. Rainwater, Global dimension of fully bounded Noetherian rings.Comm. Algebra 15(1987), 2143–2156.Google Scholar
  7. 7.
    J. T. Stafford, Homological properties of the enveloping algebraU(sl 2).Math. Proc. Cambridge Philos. Soc. 91(1983), 29–37.Google Scholar
  8. 8.
    M. L. Teply, Global dimension of right coherent rings with left krull dimension.Bull. of the Austral. Math. Soc. 39(1989), 215–223.Google Scholar
  9. 9.
    R. Gordon and J. Robson, Krull dimension.Mem. Amer. Math. Soc. 133(1973),Providence, 1973.Google Scholar
  10. 10.
    K. R. Goodearl, Ring theory: Noetherian rings and modules.Marcel Dekker Inc., New York, 1976.Google Scholar
  11. 11.
    K. R. Goodearl, Idealizers and nonsingular rings.Pacific J. Math. 48(1973), 395–402.Google Scholar
  12. 12.
    G. Krause, Krull dimension and Gabriel dimension of idealizers of semimaximal left ideals.J. London Math. Soc. 12(1976), 137–140.Google Scholar
  13. 13.
    J. C. Robson, Idealizers and hereditary Noetherian prime rings.J. Algebra 22(1972), 45–81.CrossRefGoogle Scholar
  14. 14.
    K. R. Goodearl, Subring of idealizer rings.J. Algebra 33(1975), 405–429.CrossRefGoogle Scholar
  15. 15.
    G. Krause and M. L. Teply, The transfer of the Krull dimension and the Gabriel dimension to subidealizers.Can. J. Math. XXIX(1977), 874–888.Google Scholar
  16. 16.
    M. L. Teply, On the transfer of properties to subidealizer rings.Comm. Algebra 5(1977), 743–758.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • John Koker
    • 1
  1. 1.Mathematics DepartmentUniversity of Wisconsin-OshkoshOshkoshUSA

Personalised recommendations