Journal of Biomedical Science

, Volume 7, Issue 1, pp 51–57 | Cite as

DNA vaccination using the fragment C of botulinum neurotoxin type A provided protective immunity in mice

  • Rong-Hwa Shyu
  • Men-Fang Shaio
  • Shiao-Shek Tang
  • Huey-Fen Shyu
  • Chi-Feng Lee
  • Meng-Hung Tsai
  • Jason E. Smith
  • Hsin-Hsien Huang
  • Jiunn-Jye Wey
  • Jan-Ling Huang
  • Hsin-Hou Chang
Original Paper


Botulinum neurotoxin (BoNT) is one of the most toxic substances known to produce severe neuromuscular paralysis. The currently used vaccine is prepared mainly from biohazardous toxins. Thus, we studied an alternative method and demonstrated that DNA immunization provided sufficient protection against botulism in a murine model. A plasmid of pBoNT/A-Hc, which encodes the fragment C gene of type A botulinum neurotoxin, was constructed and fused with an Igκ leader sequence under the control of a human cytomegalovirus promoter. After 10 cycles of DNA inoculation with this plasmid, mice survived lethal doses of type A botulinum neurotoxin challenges. Immunized mice also elicited cross-protection to the challenges of type E botulinum neurotoxin. This is the first study demonstrating the potential use of DNA vaccination for botulinum neurotoxins.

Key Words

DNA vaccine Botulinum neurotoxin Fragment C 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alves AM, Lasaro MO, Almeida DF, Ferreira LC. Immunoglobulin G subclass responses in mice immunized with plasmid DNA encoding the CFA/I fimbria of enterotoxigenicEscherichia coli. Immunol Lett 62:145–149;1998.Google Scholar
  2. 2.
    Anderson R, Gao XM, Papakonstantinopoulou A, Roberts M, Dougan G. Immune response in mice following immunization with DNA encoding fragment C of tetanus toxin. Infect Immun 64:3168–3173;1996.Google Scholar
  3. 3.
    Anderson R, Gao XM, Papakonstantinopoulou A, Fairweather N, Roberts M, Dougan G. Immunization of mice with DNA encoding fragment C of tetanus toxin. Vaccine 15:827–829;1997.Google Scholar
  4. 4.
    Bigalke H, Dreyer F, Bergey G. Botulinum A neurotoxin inhibits noncholinergic synaptic transmission in mouse spinal cord neurons in culture. Brain Res 360:318–324;1985.Google Scholar
  5. 5.
    Boyle JS, Brady JL, Lew AM. Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature 392:408–411;1998.Google Scholar
  6. 6.
    Chang HH, Hu ST, Huang TF, Chen SH, Lee YHW, Lo SJ. Rhodostomin, an RGD-containing peptide expressed from a synthetic gene inEscherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun 190:242–249;1993.Google Scholar
  7. 7.
    Chang HH, Tsai WJ, Lo SJ. Glutathione S-transferase-rhodostomin fusion protein inhibits platelet aggregation and induces platelet shape change. Toxicon 35:195–204;1997.Google Scholar
  8. 8.
    Chang HH, Chang CP, Chang JC, Dung SZ, Lo SJ. Application of recombinant rhodostomin in studying cell adhesion. J Biomed Sci 4:235–243;1997.Google Scholar
  9. 9.
    Chang HH, Lin CH, Lo SJ. Recombinant rhodostomin substrates induce transformation and active calcium oscillation in human platelets. Exp Cell Res 250:387–400;1999.Google Scholar
  10. 10.
    Chen CH, Wu TC. Experimental vaccine strategies for cancer immunotherapy. J Biomed Sci 5:231–252;1998.Google Scholar
  11. 11.
    Cheng L, Zeigelhoffer PR, Yang NS. In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc Natl Acad Sci USA 90:4455–4459;1993.Google Scholar
  12. 12.
    Ciernik IF, Berzofsky JA, Carbone DP. Induction of cytotoxic T lymphocytes and antitumor immunity with DNA vaccines expressing single T cell epitopes. J Immunol 156:2369–2375;1996.Google Scholar
  13. 13.
    Clayton MA, Clayton JM, Brown DR, Middlebrook JL. Protective vaccination with a recombinant fragment ofClostridium botulinum neurotoxin serotype A expression from a synthetic gene inEscherichia coli. Infect Immun 63:2738–2742;1995.Google Scholar
  14. 14.
    Crowther JR. ELISA: Theory and Practice. Totowa, Humana Press, 1995.Google Scholar
  15. 15.
    DasGupta BR, Sugiyama H. A common subunit structure inClostridium botulinum type A, B, and E toxins. Biochem Biophys Res Commun 48:108–112;1972.Google Scholar
  16. 16.
    Davis HL. Plasmid DNA expression systems for the purpose of immunization. Curr Opin Biotechnol 8:635–640;1997.Google Scholar
  17. 17.
    Dertzbaugh MT, West MW. Mapping of protective and cross-reactive domains of the type A neurotoxin ofClostridium botulinum. Vaccine 14:1538–1544;1996.Google Scholar
  18. 18.
    Donnelly JJ, Ulmer JB, Shiver JW, Liu MA. DNA vaccines. Annu Rev Immunol 15:617–648;1997.Google Scholar
  19. 19.
    Falo LD Jr, Storkus WJ. Giving DNA vaccines a helping hand. Nat Med 11:1239–1240;1998.Google Scholar
  20. 20.
    Geissler M, Gesien A, Tokushige K, Wands JR. Enhancement of cellular humoral immune responses to hepatitis C virus core protein using DNA-based vaccines augmented with cytokine-expressing plasmids. J Immunol 158:1231–1237;1997.Google Scholar
  21. 21.
    Gimenez JA, Sugiyama H. Simplified purification method forClostridium botulinum type E toxin. Appl Environ Microbiol 53:2827–2830;1987.Google Scholar
  22. 22.
    Hakim I, Levy S, Levy R. A nine-amino peptide from IL-1β augments antitumor immune responses induced by protein and DNA vaccine. J Immunol 157:5503–5511;1996.Google Scholar
  23. 23.
    Hutchens TW, Porath J. Thiophilic adsorption of immunoglobulins — analysis of conditions optimal for selective immobilization and purification. Anal Biochem 159:217–226;1986.Google Scholar
  24. 24.
    Iwasaki A, Stiernholm BJ, Chan AK, Berinstein NL, Barber BH. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 158:4591–4601;1997.Google Scholar
  25. 25.
    Kim JJ, Ayyavoo V, Bagarazzi ML, Chattergoon MA, Dang K, Wang B, Boyer JD, Weiner DB. In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J Immunol 158:816–826;1997.Google Scholar
  26. 26.
    Kiyatkin N, Maksymowych AB, Simpson LL. Induction of an immune response by oral administration of recombinant botulinum toxin. Infect Immun 65:4586–4591;1997.Google Scholar
  27. 27.
    Knight DE. Botulinum toxin types A, B and D inhibit catecholamine secretion from bovine adrenal medullary cells. FEBS Lett 207:222–226;1986.Google Scholar
  28. 28.
    LaPenotiere HF, Clayton MA, Middlebrook JL. Expression of a large, nontoxic fragment of botulinum neurotoxin serotype A and its use as an immunogen. Toxicon 33:1383–1386;1995.Google Scholar
  29. 29.
    Li Z. DNA vaccination against tuberculosis. J Biomed Sci 5:397;1998.Google Scholar
  30. 30.
    Lin YL, Chen LK, Liao CL, Yeh CT, Ma SH, Chen JL, Huang YL, Chen SS, Chiang HY. DNA immunization with Japanese encephalitis virus nonstructural protein NS1 elicits protective immunity in mice. J Virol 72:191–200;1998.Google Scholar
  31. 31.
    Michel ML, Davis HL, Schleef M, Mancini M, Tiollais P, Whalen RG. DNA-mediated immunization to the hepatitis B surface antigen in mice: Aspects of the humoral response mimic hepatitis B viral infection in humans. Proc Natl Acad Sci USA 92:5307–5311;1995.Google Scholar
  32. 32.
    Montecucco C. How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 11:314–317;1986.Google Scholar
  33. 33.
    Morkowski S, Raposo G, Geuze HJ, Rudensky AY. Peptide loading in the endoplasmic reticulum accelerates trafficking of peptide:MHC class II complexes in B cells. J Biomed Sci 6:53–63;1999.Google Scholar
  34. 34.
    Niemann H, Blasi J, Jahn R. Clostridial neurotoxins: New tools for dissecting exocytosis. Trends Cell Biol 4:179–185;1994.Google Scholar
  35. 35.
    Pearce LB, First ER, MacCallum RD, Gupta A. Pharmacologic characterization of botulinum toxin for basic science and medicine. Toxicon 35:1373–1412;1997.Google Scholar
  36. 36.
    Pieters J. MHC class II restricted antigen presentation. Curr Opin Immunol 9:89–96;1997.Google Scholar
  37. 37.
    Shone CC, Hambleton P, Melling J. Inactivation ofClostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments: Proteolytic action near the COOH-terminus of the heavy subunit destroys toxin-binding activity. Eur J Biochem 151:75–82;1985.Google Scholar
  38. 38.
    Shone CC, Melling J. Inhibition of calcium-dependent release of noradrenaline from PC-12 cells by botulinum type-A neurotoxin. Eur J Biochem 207:1009–1016;1992.Google Scholar
  39. 39.
    Simpson LL. Molecular pharmacology of botulinum toxin and tetanus toxin. Annu Rev Pharmacol Toxicol 26:427–453;1986.Google Scholar
  40. 40.
    Singh BR, Li B, Read D. Botulinum versus tetanus neurotoxins: Why is botulinum neurotoxin but not tetanus neurotoxin a food poison? Toxicon 33:1541–1547;1995.Google Scholar
  41. 41.
    Smith LA. Development of recombinant vaccines for botulinum neurotoxin. Toxicon 36:1539–1548;1998.Google Scholar
  42. 42.
    Thomson SA, Burrows SR, Misko IS, Moss DJ, Coupar BE, Khanna R. Targeting a polyepitope protein incorporating multiple class II-restricted viral epitopes to the secretory/endocytic pathway facilitates immune recognition by CD4+ cytotoxic T lymphocytes: A novel approach to vaccine design. Virology 72:2246–2252;1998.Google Scholar
  43. 43.
    Thomson SA, Sherritt MA, Medveczky J, Elliott SL, Moss DJ, Fernando GJ Brown LE, Suhrbier A. Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccination. J Immunol 160:1717–1723;1998.Google Scholar
  44. 44.
    Tse CK, Dolly JO, Hambleton P, Wray D, Melling J. Preparation and characterisation of homogeneous neurotoxin type A fromClostridium botulinum. Eur J Biochem 122:493–500;1982.Google Scholar
  45. 45.
    Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner VJ, Dwarki SH, Gromkwski RR, Deck CM, DeWitt CM, Freedman A. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745–1749;1993.Google Scholar
  46. 46.
    Ulmer JB, Sadoff JC, Liu MA. DNA vaccines. Curr Opin Immunol 8:531–536;1996.Google Scholar
  47. 47.
    Wadsworth JD, Desai M, Tranter HS, King HJ, Hambleton P, Melling J, Dolly JO, Shone CC. Botulinum type F neurotoxin: Large-scale purification and characterization of its binding to rat cerebrocortical synaptosomes. Biochem J 268:123–128;1990.Google Scholar
  48. 48.
    Walton KM, Sanberg K, Rogers TB, Schnaar RL. Complex ganglioside expression and tetanus toxin binding by PC12 pheochromocytoma cells. J Biol Chem 263:2055–2063;1988.Google Scholar
  49. 49.
    Wang Y, Yan G, Lei Z. Polymerase chain reaction based detection for botulinum neurotoxin genes in type A, B, E, F and G neurotoxin producingClostridia. Chin J Microbiol Immunol 17:182–184;1997.Google Scholar
  50. 50.
    Yokosawa N, Kurokawa Y, Tsuzuki K, Syuto B, Fujii N, Kimura K, Oguma K. Binding ofClostridium botulinum type C neurotoxin to different neuroblastoma cell lines. Infect Immun 57:272–277;1989.Google Scholar
  51. 51.
    Yu RT, Ariga T, Yoshino H, Katoch-Semba R, Ren S. Differential effects of glycosphingolipids on protein kinase C activity on PC12D pheochromocytoma cells. J Biomed Sci 1:229–236;1994.Google Scholar

Copyright information

© National Science Council 2000

Authors and Affiliations

  • Rong-Hwa Shyu
    • 2
  • Men-Fang Shaio
    • 2
  • Shiao-Shek Tang
    • 2
  • Huey-Fen Shyu
    • 2
  • Chi-Feng Lee
    • 2
  • Meng-Hung Tsai
    • 2
  • Jason E. Smith
    • 1
  • Hsin-Hsien Huang
    • 2
  • Jiunn-Jye Wey
    • 2
  • Jan-Ling Huang
    • 2
  • Hsin-Hou Chang
    • 2
  1. 1.Department of BiologyYale UniversityNew HavenUSA
  2. 2.Institute of Preventive MedicineNational Defense Medical CenterTaipeiTaiwan (Republic of China)

Personalised recommendations