Journal of Biomedical Science

, Volume 6, Issue 3, pp 145–150 | Cite as

‘Genomics’: Buzzword or reality?

  • Bertrand R. Jordan


‘Genomics’ has become a widely used term, covering a range of approaches that make use of the newly acquired wealth of genome data (both on man and on a number of model organisms) to gain new insights and accelerate research. This review attempts to present a clear and balanced view of developments in this field, to describe the four major approaches that contribute to genomics (bioinformatics, genetic analysis of extended populations, large-scale expression studies, functional approaches), and to indicate applications in basic and pharmaceutical research.

Key Words

Gene Bioinformatics Single nucleotide polymorphisms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrade MA, Sander C. Bioinformatics: From genome data to biological knowledge. Curr Opin Biotechnol 8:675–683;1997.Google Scholar
  2. 2.
    Benton D. Bioinformatics — Principles and potential of a new multidisciplinary tool. Trends Biotechnol 14:261–272;1996.Google Scholar
  3. 3.
    Boguski MS. The turning point in genome research. Trends Biochem Sci 20:295–296;1995.Google Scholar
  4. 4.
    Chen JJW, Wu R, Yang PC, Huang JY, Sher YP, Han MH, Kao WC, Lee PJ, Chiu TF, Chang F, Chu YW, Wu CW, Peck K. Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics 51:313–324;1998.Google Scholar
  5. 5.
    Collins FS, Patrinos A, Jordan E, Chakravarti A, Gesteland R, Walters L. New goals for the US Human Genome Project: 1998–2003. Science 282:682–689;1998.Google Scholar
  6. 6.
    Editorial: SNP attack on complex traits. Nat Genet 20:217–218;1998.Google Scholar
  7. 7.
    Gaasterland T. Structural genomics: Bioinformatics in the driver's seat. Nat Biotechnol 16:625–627;1998.Google Scholar
  8. 8.
    Gershon D, Sobral BW, Horton B, Wickware P, Gavaghan H, Strobl M. Bioinformatics in a post-genomics age. Nature 389:417–422;1997.Google Scholar
  9. 9.
    Gilbert W. Towards a paradigm shift in biology. Nature 349:99;1991.Google Scholar
  10. 10.
    Jackson GR, Salecker I, Dong X, Yao X, Arnheim N, Faber PW, MacDonald ME, Zipursky SL. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21:633–642;1998.Google Scholar
  11. 11.
    Jordan BR. Large-scale expression measurement by hybridisation methods: From high-density membranes to ‘DNA chips’. J Biochem (Tokyo) 124:251–258;1998.Google Scholar
  12. 12.
    Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680;1996.Google Scholar
  13. 13.
    Maleszka R, de Couet HG, Miklos GL. Data transferability from model organisms to human beings: Insights from the functional genomics of the flightless region of Drosophila. Proc Natl Acad Sci USA 95:3731–3736;1998.Google Scholar
  14. 14.
    Marshall A. HGS launches ‘first’ genomics product in clinic. Nat Biotechnol 16:129;1998.Google Scholar
  15. 15.
    Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ, Stoughton R, Burchard J, Slade D, Dai H, Bassett DE Jr, Hartwell LH, Brown PO, Friend SH. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 4:1293–1301;1998.Google Scholar
  16. 16.
    Masood E. Iceland poised to sell exclusive rights to national health data. Nature 396:395;1998.Google Scholar
  17. 17.
    McKusick VA. Genomics: Structural and functional studies of genomes. Genomics 45:244–249;1997.Google Scholar
  18. 18.
    Nguyen C, Rocha D, Granjeaud S, Baldit M, Bernard K, Naquet P, Jordan BR. Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones. Genomics 29:207–215;1995.Google Scholar
  19. 19.
    Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM, Adams MD, et al. Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629;1994.Google Scholar
  20. 20.
    Persidis A. Biochips. Nat Biotechnol 16:981–983;1998.Google Scholar
  21. 21.
    Rossi DL, Vicari AP, Franz-Bacon K, McClanahan TK, Zlotnik A. Identification through bioinformatics of two new macrophage proinflammatory human chemokines: MIP-3alpha and MIP-3beta. J Immunol 158:1033–1036;1997.Google Scholar
  22. 22.
    Sadee W. Genomics and drugs: Finding the optimal drug for the right patient. Pharm Res 15:959–963;1998.Google Scholar
  23. 23.
    Scangos G. Drug discovery in the postgenomic era. Nat Biotechnol 15:1220–1221;1997.Google Scholar
  24. 24.
    Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470;1995.Google Scholar
  25. 25.
    Secombe J, Pispa J, Saint R, Richardson H. Analysis of a Drosophila cyclin E hypomorphic mutation suggests a novel role for cyclin E in cell proliferation control during eye imaginal disc development. Genetics 149:1867–1882;1998.Google Scholar
  26. 26.
    Smith TF. Functional genomics — Bioinformatics is ready for the challenge. Trends Genet 14:291–293;1998.Google Scholar
  27. 27.
    Stipp D. Gene chip breakthrough. Fortune March 31:56–73;1997.Google Scholar
  28. 28.
    TheC. elegans Sequencing Consortium. Genome Sequence of the nematodeCaenorhabditis elegans. A platform for investigating biology. Science 282:2012–2018;1998.Google Scholar
  29. 29.
    Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lander ES, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082;1998.Google Scholar
  30. 30.
    Weatherall D, Clegg J, Kwiatkowski D. The role of genomics in studying genetic susceptibility to infectious disease. Genome Res 7:967–973;1997.Google Scholar
  31. 31.
    Wurst W, Rossant J, Prideaux V, Kownacka M, Joyner A, Hill DP, Guillemot F, Gasca S, Cado D, Auerbach A, et al. A large-scale genetrap screen for insertional mutations in developmentally regulated genes in mice. Genetics 139:889–899;1995.Google Scholar
  32. 32.
    Young K, Lin S, Sun L, Lee E, Modi M, Hellings S, Husbands M, Ozenberger B, Franco R. Identification of a calcium channel modulator using a high throughput yeast two-hybrid screen. Nat Biotechnol 16:946–950;1998.Google Scholar
  33. 33.
    Zambrowicz BP, Friedrich GA, Buxton EC, Lilleberg SL, Person C, Sands AT. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392:608–611;1998.Google Scholar
  34. 34.
    Zambrowicz BP, Friedrich GA. Comprehensive mammalian genetics: History and future prospects of gene trapping in the mouse. Int J Dev Biol 42:1025–1036;1998.Google Scholar

Copyright information

© National Science Council 1999

Authors and Affiliations

  • Bertrand R. Jordan
    • 1
  1. 1.TAGC Group, Institut de Cancérologie et d'Immunologie de Marseille, Centre d'Immunologie INSERM/CNRS de Marseille-LuminyMarseilleFrance

Personalised recommendations