Advertisement

Somatic Cell and Molecular Genetics

, Volume 20, Issue 6, pp 505–513 | Cite as

Minimum essential region of CCG1/TAFII250 required for complementing the temperature-sensitive cell cycle mutants, tsBN462 and ts13 cells, of hamster BHK21 cells

  • Eishi Noguchi
  • Takeshi Sekiguchi
  • Yukiko Nohiro
  • Toshiro Hayashida
  • Eiji Hirose
  • Naoyuki Hayashi
  • Takeharu Nishimoto
Article

Abstract

CCG1/TAFII250, the largest subunit of theTFIID complex, is mutated in ts cell cycle mutants of BHK21 cells, ts13 and tsBN462, which have a promoter-selective transcriptional defect. A series of deletion mutants ofCCG1 cDNA were prepared and transfected into these mutants, in order to identify functional domains of CCG1 required for the complementation of ts 13/BN462 mutation. We determined the minimum size of CCG1: CCG1ME, essential for complementing the ts mutation, which possessed one proline cluster, an HMG1-like domain, and a nuclear localization signal, but which lacked the bromo domains and the acidic phosphorylation sites for casein kinase II common to transcriptional activators. It encodes a protein of 140 kDa. These characteristics of CCG1ME correspond to yeast TAFII145, the yeast homolog of human TAFII250. CCG1ME bound to TBP, creating its own TFIID complex different from that of the endogenous mutated CCG1 in ts+ transformants of tsBN462 cells.

Keywords

Proline Phosphorylation Site Deletion Mutant Large Subunit Nuclear Localization Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Nishimoto, T., and Basilico, C. (1978).Somat. Cell. Genet. 4:323–340.Google Scholar
  2. 2.
    Nishimoto, T., Sekiguchi, T., Kai, R., Yamashita, K., Takahashi, T., and Sekiguchi, M. (1982).Somat. Cell. Genet. 8:811–824.Google Scholar
  3. 3.
    Sekiguchi, T., Miyata, T., and Nishimoto, T. (1988).EMBO J. 7:1683–1687.Google Scholar
  4. 4.
    Talavera, A., and Basilico, C. (1977).J. Cell Physiol. 92:425–436.Google Scholar
  5. 5.
    Sekiguchi, T., Yoshida, M., Sekiguchi, M., and Nishimoto, T. (1987).Exp. Cell Res. 169:395–407.Google Scholar
  6. 6.
    Sekiguchi, T., Nohiro, Y., Nakamura, Y., Hisamoto, N., and Nishimoto, T. (1991).Mol. Cell Biol. 11:3317–3325.Google Scholar
  7. 7.
    Brown, C.J., Sekiguchi, T., Nishimoto, T., and Willard, H.F. (1989).Somat. Cell Mol. Genet. 15:93–96.Google Scholar
  8. 8.
    Gerber, H., Seipel, K., Georgiev, O., Hofferer, M., Hung, M., Rusconi, S., and Schaffner, W. (1994).Science 263:808–811.Google Scholar
  9. 9.
    Georgakopoulos, T., and Thireos, G. (1992).EMBO J. 11:4145–4152.Google Scholar
  10. 10.
    Haynes, S.R., Dollard, C., Winston, F., Beck, S., Trowsdale, J., and Dawid, J.B. (1992).Nucleic Acids Res. 20:2603.Google Scholar
  11. 11.
    Tamkun, J.W., Deuring, R., Scotto, M.P., Kissinger, M., Pattatucci, A.M., Kaufman, T.C., and Kennison, J.A. (1992).Cell 68:561–572.Google Scholar
  12. 12.
    Edelman, A.M., Blumenthal, D.A., and Krebs, E.G. (1987).Annu. Rev. Biochem. 56:563–613.Google Scholar
  13. 13.
    Hisatake, K., Hasegawa, S., Takada, R., Nakatani, Y., Horikoshi, M., and Roeder, R.G. (1993).Nature 362:179–181.Google Scholar
  14. 14.
    Ruppert, S., Wang, E.H., and Tjian, R. (1993).Nature 362:175–179.Google Scholar
  15. 15.
    Gill, G., and Tjian, R. (1992).Curr. Opinion Genet. Dev. 2:236–242.Google Scholar
  16. 16.
    Hayashida, T., Sekiguchi, T., Noguchi, E., Sunamoto, H., Ohba, T., and Nishimoto, T. (1994).Gene 141:267–270.Google Scholar
  17. 17.
    Liu, H.T., Gibson, C.W., Hirschhorn, R.R., Rittling, S., Baserga, R., and Mercer, W.E. (1985).J. Biol. Chem. 260:3269–3274.Google Scholar
  18. 18.
    Wang, E.H., and Tjian, R. (1994).Science 263:811–814.Google Scholar
  19. 19.
    Landsman, D. (1993).Nature 363:590.Google Scholar
  20. 20.
    Reese, J.C., Apone, L., Walker, S.S., Griffin, L.A., and Green, M.R. (1994).Nature 371:523–527.Google Scholar
  21. 21.
    O'Hare, K., Benoist, C., and Breathnach, R. (1981).Proc. Natl. Acad. Sci. U.S.A. 78:1527–1531.Google Scholar
  22. 22.
    Kokubo, T., Yamashita, S., Horikoshi, M., Roeder, R.G., and Nakatani, Y. (1994).Proc. Natl. Acad. Sci. U.S.A. 91:3520–3524.Google Scholar
  23. 23.
    Kokubo, T., Gong, D.-W., Yamashita, S., Horikoshi, M., Reoder, R.G., and Nakatani, Y. (1993).Genes Dev. 7:1033–1046.Google Scholar
  24. 24.
    Weinzierl, R.O.J., Dynlacht, B.D., and Tjian, R. (1993).Nature 362:511–517.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Eishi Noguchi
    • 1
  • Takeshi Sekiguchi
    • 1
  • Yukiko Nohiro
    • 1
  • Toshiro Hayashida
    • 1
  • Eiji Hirose
    • 1
  • Naoyuki Hayashi
    • 1
  • Takeharu Nishimoto
    • 1
  1. 1.Department of Molecular Biology, Graduate School of Medical ScienceKyushu UniversityFukuokaJapan

Personalised recommendations