Somatic Cell and Molecular Genetics

, Volume 20, Issue 6, pp 493–504 | Cite as

Characterization of spontaneous and induced mutations in SV40-transformed normal and ataxia telangiectasia cell lines

  • Christiane Röscheisen
  • Sabine Haupter
  • Ulrich Zechner
  • Günter Speit


Spontaneous and induced mutations at the HPRT locus were analyzed in one normal (MRC5CV1) and one ataxia telangiectasia (AT5BIVA) SV40-transformed cell line derived from male donors. Multiplex PCR and Southern analyses revealed a high frequency of spontaneous deletion mutations that may be a consequence of the SV40 transformation. Four mutagens (ethyl methanesulfonate, bromodeoxyuridine, bleomycin, adriamycin), which differ in their types of primary DNA lesions, caused specific patterns of mutations. By using fluorescence in situ hybridization (FISH) techniques, we were able to show that more than 90% of the AT5BIVA cells contained two X chromosomes with HPRT alleles, while in more than 90% of the MRC5CV1 cells genomic hemizygosity for the HPRT gene was found. Taking into account these findings we found that the AT5BIVA cell line possesses spontaneous hypermutability as well as hypersensitivity and hypermutability to bleomycin (BLM) and adriamycin (AM). Both mutagens induced deletion mutations in both cell lines, but more complex mutations and larger deletions were found in AT5BIVA cells.


Deletion Mutation Bleomycin Adriamycin Methanesulfonate Induce Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Thacker, J. (1985).Mutat. Res. 150:431–442.Google Scholar
  2. 2.
    Mohrenweiser, H.W., and Jones, I.M. (1990).Mutat. Res. 231:87–108.Google Scholar
  3. 3.
    Pai, G.S., Sprenkle, J.A., Do, T.T., Mareni, C.E., and Migeon, B.R. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:2810–2813.Google Scholar
  4. 4.
    Gibbs, R.A., Nguyen, P.N., Edwards, A., Civitello, A.B., and Caskey, C.T. (1990).Genomics 7:235–244.Google Scholar
  5. 5.
    Edwards, A., Voss, H., Rice, P., Civitello, A., Stegemann, J., Schwager, C., Zimmermann, J., Erfle, H., Caskey, C.T., and Ansorge, W. (1990).Genomics 6:593–608.Google Scholar
  6. 6.
    Sculley, D.G., Dawson, P.A., Emmerson, B.T., and Gordon, R.B. (1992).Hum. Genet. 90:195–207.Google Scholar
  7. 7.
    Nicklas, J.A., Hunter, T.C., O'Neill, J.P., and Albertini, R.J. (1991).Am. J. Hum. Genet. 49:267–278.Google Scholar
  8. 8.
    Morris, T., Masson, W., Singleton, B., and Thacker, J. (1993).Somat. Cell Mol. Genet. 19:9–19.Google Scholar
  9. 9.
    Thacker, J. (1986).Mutat. Res. 160:267–275.Google Scholar
  10. 10.
    Cox, R., and Masson, W.K. (1978).Nature 276:629–630.Google Scholar
  11. 11.
    Fuscoe, J., Zimmerman, L.J., Harrington-Brock, K., and Moore, M. (1992).Mutat. Res. 283:255–262.Google Scholar
  12. 12.
    Digweed, M. (1993).Toxicol. Lett. 67:259–281.Google Scholar
  13. 13.
    McKinnon, P.J. (1987).Hum. Genet. 75:197–208.Google Scholar
  14. 14.
    Arlett, C.F., and Cole, J. (1986). InGenetic Toxicology of Environmental Chemicals, Part A: Basic Principles and Mechanisms of Action, (eds.) Ramel, C., Lambert, B., and Magnusson, J. (Liss, New York), pp. 237–244.Google Scholar
  15. 15.
    Wood, C.M., Timme, T.L., Hurt, M.M., Brinkley, B.R., Ledbetter, D.H., and Moses, R.E. (1987).Exp. Cell Res. 169:543–553.Google Scholar
  16. 16.
    Ray, F.A., and Kraemer, P.M. (1992).Cancer Genet. Cytogenet. 59:39–44.Google Scholar
  17. 17.
    Cremer, T., Lichter, P., Borden, J., Ward, D.C., and Manuelidis, L. (1988).Hum. Genet. 80:235–246.Google Scholar
  18. 18.
    Baumgartner, M., Viegas-Pequignot, E., Hoffschir, F., Ricoul, M., Bravard, A., and Dutrillaux, B. (1991).Cancer Genet. Cytogenet. 56:23–29.Google Scholar
  19. 19.
    Wood, C.M., and Moses, R.E. (1989).Somat. Cell Mol. Genet. 15:345–357.Google Scholar
  20. 20.
    Fukuchi, K.-I., Martin, G.M., and Monnat, Jr., R.J. (1989).Proc. Natl. Acad. Sci. U.S.A. 86:5893–5897.Google Scholar
  21. 21.
    Dorado, G., Steingrimsdottir, H., Arlett, C.F., and Lehmann, A.R. (1991).J. Mol. Biol. 217:217–222.Google Scholar
  22. 22.
    Köberle, B., and Speit, G. (1991).Mutat. Res. 249:161–167.Google Scholar
  23. 23.
    Speit, G., and Haupter, S. (1985).Hum. Genet. 70:126–129.Google Scholar
  24. 24.
    Lengauer, C., Green, E.D., and Cremer, T. (1992).Genomics 13:826–828.Google Scholar
  25. 25.
    Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982).Molecular Cloning: A Laboratory Manual, (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).Google Scholar
  26. 26.
    Rigby, P.W.J., Dieckmann, M., Rhodes, C., and Berg, P. (1977).J. Mol. Biol. 113:237–251.Google Scholar
  27. 27.
    Lichter, P., Cremer, T., Borden, J., Manuelidis, L., and Ward, D.C. (1988).Hum. Genet. 80:224–234.Google Scholar
  28. 28.
    Pinkel, D., Gray, J.W., Trask, B., van Engh, G., Fuscoe, J., and van Dekken, H. (1986).Cold Spring Harb. Symp. Quant. Biol. 51:151–157.Google Scholar
  29. 29.
    Lehmann, A.R. (1982). InAtaxia telangiectasia. A Cellular and Molecular Link between Cancer, Neuropathology, and Immune Deficiency, (eds.) Bridges, B.A., and Harnden, D.G. (Wiley, New York), pp. 83–101.Google Scholar
  30. 30.
    Shiloh, Y., Tabor, E., and Becker, Y. (1983).Carcinogenesis 4:1317–1322.Google Scholar
  31. 31.
    Wood, C.M., Timme, T.L., Hurt, M.M., Brinkley, B.R., Ledbetter, D.H., and Moses, R.E. (1987).Exp. Cell. Res. 169:543–553.Google Scholar
  32. 32.
    Rinehart, C.A., Mayben, J.P., Butler, T.D., Haskill, J.S., and Kaufman, D.G. (1992).Carcinogenesis 13:63–68.Google Scholar
  33. 33.
    Simons, J.W.I.M. (1982). InAtaxia Telangiectasia. A Cellular and Molecular Link between Cancer, Neuropathology, and Immune Deficiency, (eds.) Bridges, B.A., and Harnden, D.G. (Wiley, New York), pp. 155–167.Google Scholar
  34. 34.
    Harwood, J., Tachibana, A., Davies, R., Bhattacharyya, N.P., and Meuth, M. (1993).Hum. Mol. Genet. 2:165–171.Google Scholar
  35. 35.
    Steingrimmsdottir, H., Rowley, G., Waugh, A., Beare, D., Ceccherini, I., Cole, J., and Lehmann, A.R. (1993).Mutat. Res. 294:29–41.Google Scholar
  36. 36.
    Köberle, B., Haupter, S., Just, W., and Speit, G. (1991).Mutagenesis 6:527–531.Google Scholar
  37. 37.
    Thacker, J. (1989).Mutat. Res. 220:187–204.Google Scholar
  38. 38.
    Ritter, M.A. (1981).Biochim. Biophys. Acta 652:151–159.Google Scholar
  39. 39.
    Debenham, P.G., Webb, M.B.T., Jones, N.J., and Cox, R. (1987).J. Cell. Sci. Suppl.,6:177–189.Google Scholar
  40. 40.
    Rünger, T.M., Poot, M., and Kraemer, K.H. (1989).Mutat. Res. 293:47–54.Google Scholar
  41. 41.
    Sommer, S.S., and Ketterling R.P. (1993).Am. J. Hum. Genet. 52:1016–1018.Google Scholar

Copyright information

© Plenum Pulbishing Corporation 1994

Authors and Affiliations

  • Christiane Röscheisen
    • 1
  • Sabine Haupter
    • 1
  • Ulrich Zechner
    • 1
  • Günter Speit
    • 1
  1. 1.Abteilung Klinische GenetikUniversität UlmUlmGermany

Personalised recommendations