Somatic Cell and Molecular Genetics

, Volume 20, Issue 6, pp 481–491 | Cite as

Somatic cell genetic analysis of two classes of CHO cell mutants expressing opposite phenotypes in sterol-depedent regulation of cholesterol metabolism

  • Mazahir T. Hasan
  • T. Y. Chang


Two different classes of hamster cell mutants (25RA cells and M1 cells) express opposite phenotypes in sterol dependent regulation. In 25RA cells, sterols added in growth medium fail to cause down-regulation of sterol synthesis rate and low density lipoprotein (LDL) receptor activity, while in M1 cells, removal of lipids from growth medium fail to cause up-regulation of sterol synthesis rate and LDL receptor activity. Cell hybridization analysis showed that the 25RA phenotype is semidominant, while the M1 phenotype is recessive. Using 25RA as the parental cells, we isolated eight independent mutant cells (DM cells) and showed that all of them belong to the same genetic complementation group as the M1 mutant, indicating that the normal (unmutated) M1 gene product(s) is required to express the 25RA phenotype. We next performed gene transfer experiments using hamster cell genomic DNAs containing the functional human M1 gene as the donor, and the double mutant cell DM7 as the recipient. The resultant transfectant cells express the 25RA cell phenotype (instead of the wild-type cell phenotype). This result, along with the results obtained from cell hybridization analysis, shows that the 25RA and M1 cell phenotypes are caused by mutations at two different genes.


Cell Phenotype Genetic Complementation Opposite Phenotype Gene Transfer Experiment 25RA Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Goldstein, J.L., and Brown, M.S. (1990).Nature 343:425–430.Google Scholar
  2. 2.
    Rajavashisth, T.B., Taylor, A.K., Andalibi, A., Svenson, K.L., and Lusis, A.J. (1989).Science 245:640–643.Google Scholar
  3. 3.
    Osborne, T.F., Bennett, O., and Rhee, K. (1992).J. Biol. Chem. 267:18973–18982.Google Scholar
  4. 4.
    Wang, X.W., Briggs, M.R., Hua, X., Yokoyama, C.K., Goldstein, J.L., and Brown, M.S. (1993)J. Biol. Chem.,268:14497–14504.Google Scholar
  5. 5.
    Hua, X., Yokoyama, C., Wu, J., Briggs, M.R., Brown, S., Goldstein, K., and Wang, X. (1993).Proc. Natl. Acad. Sci. U.S.A. 90:11603–11607.Google Scholar
  6. 6.
    Leonard, S., and Sinensky M. (1988).Biochim. Biophys. Acta 47:101–112.Google Scholar
  7. 7.
    Chang, T.Y. (1983). InEnzymes 16:491–521.Google Scholar
  8. 8.
    Chang, T.Y., and Limanek, J.S. (1980).J. Biol. Chem. 255:7787–7795.Google Scholar
  9. 9.
    Chen, H.W., Cavenee, W.K., and Kandusch, A.A. (1979).J. Biol. Chem.,254:715–720.Google Scholar
  10. 10.
    Sinensky, M., Duwe, G., and Pinkerton, F. (1979).J. Biol. Chem. 254:4482–4486.Google Scholar
  11. 11.
    Chang, T.Y., and Chang, C.C.Y. (1982).Biochemistry 21:5316–5323.Google Scholar
  12. 12.
    Metherall, J.E., Goldstein, J.L., Luskey, K.L., and Brown, M.S. (1989).J. Biol. Chem. 264:115634–115641.Google Scholar
  13. 13.
    Dawson, P.A., Metherall, J.E., Ridgway, N.D., Brown, M.S., and Goldstein, J.L. (1991).J. Biol. Chem. 266:9128–9134.Google Scholar
  14. 14.
    Limanek, J.S., Chin, J., and Chang, T.Y. (1979).Proc. Natl. Acad. Sci. U.S.A. 75:5452–5456.Google Scholar
  15. 15.
    Chin, J., and Chang, T.Y. (1981).J. Biol. Chem. 256:6304–6310.Google Scholar
  16. 16.
    Chin, J., and Chang, T.Y. (1982).Biochemistry 21:3196–3202.Google Scholar
  17. 17.
    Hasan, M.T., Chang, C.C.Y., and Chang, T.Y. (1994).Somat. Cell Mol. Genet. 20:183–194.Google Scholar
  18. 18.
    Evans, M.J., and Metherall, J.E. (1993).Mol. Cell Biol. 13:5175–5185.Google Scholar
  19. 19.
    Chu, E.H.Y., and Malling, H.V. (1968).Proc. Natl. Acad. Sci. U.S.A. 61:1306–1312.Google Scholar
  20. 20.
    Gillin, F.D., Roufa, D.J., Beaudet, A.L., and Caskey, C.T. (1972).Genetics 72:239–252.Google Scholar
  21. 21.
    Cadigan, K.M., Heider, J.G., and Chang, T.Y. (1988).J. Biol. Chem. 263:274–282.Google Scholar
  22. 22.
    Davidson, R.L., O'Malley, K.A., and Wheeler, T.B. (1976).Somat. Cell Genet. 2:271–280.Google Scholar
  23. 23.
    Dillela, A.G., and Woo, S.L.C. (1985).Focus 7:1–3.Google Scholar
  24. 24.
    Hasan, M.T., Subbaroyan, R., and Chang, T.Y. (1991).Somat. Cell Mol. Genet. 17:513–516.Google Scholar
  25. 25.
    Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual, 2nd ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).Google Scholar
  26. 26.
    Gil, G., Brown, M.S., and Goldstein, J.L. (1986).J. Biol. Chem. 261:3717–3725.Google Scholar
  27. 27.
    Nudel, U., Zakut, R., Shani, M., Neuman, S., Levy, Z., and Yaffe, D. (1983).Nucleic Acids Res. 11:1759–1771.Google Scholar
  28. 28.
    Feinberg, A.P., and Vogelstein, B. (1983).Anal. Biochem. 132:6–13.Google Scholar
  29. 29.
    Southern, P.L., and Berg, P. (1982).J. Mol. Appl. Genet. 1:327–341.Google Scholar
  30. 30.
    Wang, X., Sato, R., Brown, M.S., Hua, X., and Goldstein, J.L. (1994).Cell 77:53–62.Google Scholar
  31. 31.
    Yang, J., Sato, R., Goldstein, J.L., and Brown, M.S. (1994).Genes Dev. 8:1910–1919.Google Scholar
  32. 32.
    Sato, R., Yang, J., Wang, X., Evans, M.J., Ho, Y.K., Goldstein, J.L., and Brown, M.S. (1994)J. Biol. Chem. 269:17267–17273.Google Scholar
  33. 33.
    Spear, D.H., Ericsson, J., Jackson, S.M., and Edwards, P.A. (1994).J. Biol. Chem. 269:25212–25218.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Mazahir T. Hasan
    • 1
  • T. Y. Chang
    • 1
  1. 1.Department of BiochemistryDartmouth Medical SchoolHanover

Personalised recommendations