Somatic Cell and Molecular Genetics

, Volume 20, Issue 6, pp 451–461 | Cite as

Testis and somaticXrcc-1 DNA repair gene expression

  • Christi A. Walter
  • Jianwei Lu
  • Mukesh Bhakta
  • Zi-Qiang Zhou
  • Larry H. Thompson
  • John R. McCarrey


The humanXRCC1 gene has been shown to be involved in DNA strand-break repair using the Chinese hamster ovary cell mutant EM9. The purpose of this study was to characterize the expression ofXrcc-1 to determine if there is tissue-specific expression and to provide a baseline of information for future studies that may involve alteringXrcc-1 expression in mice. Normal young adult male testis and enriched populations of pachytene spermatocytes and round spermatids displayed significantly higher levels ofXrcc-1 expression than other mouse tissue, althoughXrcc-1 transcripts were found in low abundance in all tested tissues. Cultured mouse cell lines displayed levels of expression similar to male germ cells, which is a striking contrast to the levels of expression obtained in somatic tissues from the mouse. The relatively high levels of expression identified in male germ cells indicateXrcc-1 may have an important role in male germ cell physiology.


Chinese Hamster Ovary Cell Chinese Hamster Ovary Repair Gene Somatic Tissue Striking Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Heim, S., and Mitelman, F. (1989).Adv. Cancer Res. 52:1–43.Google Scholar
  2. 2.
    Knudson, A.G., Jr. (1991).Mutat. Res. 247:185–190.Google Scholar
  3. 3.
    Sandberg, A.A. (1991).Mutat. Res. 247:231–240.Google Scholar
  4. 4.
    Cleaver, J.E., and Kraemer, K.H. (1989). Xeroderma pigmentosum. InThe Metabolic Basis of Inherited Disease, 6th ed, (eds.) Scriver, C.R., Beaudet, A.L., Sly, W.S., and Valle, D. (McGraw Hill, New York), pp. 2949–2971.Google Scholar
  5. 5.
    Robbins, J.H., Kraemer, K.H., Lutzner, M.A., Festoff, B.W., and Coon, H.G. (1974).Ann. Intern. Med. 80:221–248.Google Scholar
  6. 6.
    Jones, K.L. (1988). Ataxia-telangiectasia syndrome. InSmith's Recognizable Patterns of Human Malformation, 4th ed., (W.B. Saunders, Philadelphia), pp. 164–165.Google Scholar
  7. 7.
    Nora, J.J., Fraser, F.C., Bear, J., Greenberg, C.R., Patterson, D., and Warburton, D. (1994). Selected mendelian diseases. InMedical Genetics: Principles and Practice, 4th ed., (Lea and Febiger, Philadelphia), pp. 141–212.Google Scholar
  8. 8.
    Drapkin, R., Reardon, J., Ansari, A., Huang, J.C., Zawel, L., Ahn, K., Sancar, A., and Reinberg, D. (1994).Nature 368:769–772.Google Scholar
  9. 9.
    Schaeffer, L., Roy, R., Humbert, S., Moncollin, V., Vermeulen, W., Hoeijmakers, J.H.J., Chambon, P., and Egly, J.M. (1993).Science 260:58–63.Google Scholar
  10. 10.
    Riccardi, V.M., Dobson, C.E., Charkraborty, R., and Bontke, C. (1984).Am. J. Med. Genet. 18:169–176.Google Scholar
  11. 11.
    Harper, P.S. (1990). The muscular dystrophies. InThe Metabolic Basis of Inherited Disease, 6th ed., (eds.) Scriver, C.R., Beaudet, A.L., Sly, W.S., and Valle, D. (McGraw Hill, New York), pp. 2869–2902.Google Scholar
  12. 12.
    van Duin, M., de Wit, J., Odijk, H., Westerveld, A., Yasui, A., Koken, M.H.M., Hoeijmakers, J.H.J., and Bootsma, D. (1986).Cell 44:913–923.Google Scholar
  13. 13.
    Weber, C.A., Salazar, E.P., Stewart, S.A., and Thompson, L.H. (1990).EMBO J. 9:1437–1447.Google Scholar
  14. 14.
    Weeda, G., van Ham, R.C.A., Masurel, R., Westerveld, A., Odijk, H., DeWitt, J., Bootsma, D., Vander Eb, A.J., and Hoejimakers, J.H.J. (1990).Mol. Cell. Biol. 10:2570–2581.Google Scholar
  15. 15.
    Thompson, L.H., Brookman, K.W., Weber, C.A., Salazar, E.P., Reardon, J.T., Sancar, A., Deng, Z., and Siciliano, M.J. (1994).Proc. Natl. Acad. Sci. U.S.A. 91:6855–6859.Google Scholar
  16. 16.
    Mudgett, J.S., and MacInnes, M.A. (1990).Genomics 8:623–633.Google Scholar
  17. 17.
    Troelstra, C., Odijk, H., DeWitt, J., Westerveld, A., Thompson, L.H., Bootsma, D., and Hoeijmakers, J.H.J. (1990).Mol. Cell. Biol. 10:5806–5813.Google Scholar
  18. 18.
    Tanaka, K., Miura, N., Satokata, I., Miyamoto, I., Yoshida, M.C., Satoh, Y., Kondo, S., Yasui, A., Okayama, H., and Okada, Y. (1990).Nature 348:73–76.Google Scholar
  19. 19.
    Legerski, R., and Peterson, C. (1992).Nature 359:70–73.Google Scholar
  20. 20.
    McWhir, J., Selfridge, J., Harrison, D.J., Squires, S., and Melton, D.W. (1993).Nature Genet. 5:217–223.Google Scholar
  21. 21.
    Thompson, L.H., Brookman, K.W., Jones, N.J., Allen, S.A., and Carrano, A.V. (1990).Mol. Cell. Biol. 10:6160–6171.Google Scholar
  22. 22.
    Thompson, L.H., Brookman, K.W., Dillehay, L.E., Carrano, A.V., Mazrimas, J.A., Mooney, C.L., and Minkler, J.L. (1982).Mutat. Res. 95:427–440.Google Scholar
  23. 23.
    Hoy, C.A., Fuscoe, J.C., and Thompson, L.H. (1987).Mol. Cell. Biol. 7:2007–2011.Google Scholar
  24. 24.
    Brookman, K.W., Tebbs, R.S., Allen, S.A., Tucker, J.D., Swiger, R.R., Lamerdin, J.E., Carrano, A.V., and Thompson, L.H. (1994).Genomics 22:180–188.Google Scholar
  25. 25.
    Caldecott, K.W., Tucker, J.D., and Thompson, L.H. (1992).Nucleic Acids Res. 20:4575–4579.Google Scholar
  26. 26.
    Yoo, H., Li, L., Sacks, P.G., Thompson, L.H., Becker, F.F., and Chan, J.Y.H. (1992).Biochem. Biophys. Res. Commun. 186:900–910.Google Scholar
  27. 27.
    Dunphy, E.J., Beckett, M.A., Thompson, L.H., and Weichselbaum, R.R. (1992).Radiat. Res. 130:166–170.Google Scholar
  28. 28.
    Mintz, B., and Russell, E.S. (1957).J. Exp. Zool. 134:207–237.Google Scholar
  29. 29.
    Sanger, F., Nicklen, S., and Coulson, A.R. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:5463–5467.Google Scholar
  30. 30.
    Kreig, P.A., and Melton, D.A. (1987).Methods Enzymol. 155:397–415.Google Scholar
  31. 31.
    Patek, P.Q., Collins, J.L., and Cohn, M. (1978).Nature 276:510–511.Google Scholar
  32. 32.
    Owens, R.B., Smith, H.S., and Hackett, A.J. (1974).J. Natl. Canc. Inst. 53:261–269.Google Scholar
  33. 33.
    Owens, R.B. (1974).J. Natl. Canc. Inst. 52:1375–1378.Google Scholar
  34. 34.
    Mather, J.P. (1980).Biol. Reprod. 23:243–252.Google Scholar
  35. 35.
    Badley, J.E., Bishop, G.A., St. John, T., and Frelinger, J.A. (1988).BioTechniques 6:114–116.Google Scholar
  36. 36.
    Glisin, V., Crkvenjakov, R., and Byus, C. (1974).Biochemistry 13:2633–2637.Google Scholar
  37. 37.
    Romrell, L.J., Bellve, A.R., and Fawcett, D.W. (1976).Dev. Biol. 49:119–131.Google Scholar
  38. 38.
    Rymaszewski, Z., Abplanalp, W.A., Cohen, R.M., and Chomczynski, P. (1990).Anal. Biochem. 188:91–96.Google Scholar
  39. 39.
    Church, G.M., and Gilbert, W. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:1991–1995.Google Scholar
  40. 40.
    Caldecott, K.W., McKeown, C.K., Tucker, J.D., Ljungquist, S., and Thompson, L.H. (1994).Mol. Cell. Biol. 14:68–76.Google Scholar
  41. 41.
    Hotta, Y., Chandley, A.C., and Stern, H. (1977).Chromosoma,62:255–268.Google Scholar
  42. 42.
    van Loon, A.A.W.M., Sonneveld, E., Hoogerbrugge, J., van der Schans, G.P., Grootegoed, J.A., Lohman, P.H.M., and Baan, R.A. (1993).Mutat. Res. 294:139–148.Google Scholar
  43. 43.
    Inoue, M., Kurihara, T., Yamashita, M., and Tatsumi, K. (1993).Mutat. Res. 294:179–186.Google Scholar
  44. 44.
    Hecht, N.B. (1990).J. Reprod. Fertil. 88:679–693.Google Scholar
  45. 45.
    Kleene, K.C. (1989).Development 106:367–373.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Christi A. Walter
    • 1
  • Jianwei Lu
    • 1
  • Mukesh Bhakta
    • 1
  • Zi-Qiang Zhou
    • 1
  • Larry H. Thompson
    • 2
  • John R. McCarrey
    • 3
  1. 1.Department of Cellular and Structural BiologyThe University of Texas Health Science Center at San AntonioSan Antonio
  2. 2.Biology and Biotechnology Research ProgramLawrence Livermore National LaboratoryLivermore
  3. 3.Department of GeneticsSouthwest Foundation for Biomedical ResearchTexasSan Antonio

Personalised recommendations