Skip to main content
Log in

Endogenous and transfected mouse alpha-fetoprotein genes in undifferentiated F9 cells are activated in transient heterokaryons

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Mouse F9 teratocarcinoma cells provide a system to study developmentally regulated alpha-fetoprotein (AFP) gene expression. AFP is not expressed in undifferentiated F9 cells but is induced when cells differentiate as cell aggregates in the presence of retinoic acid. Previous studies have led to the suggestion that undifferentiated F9 cells contain negative regulators of AFP expression. To test this, we have used transient heterokaryons to ask whether inactive AFP genes in undifferentiated F9 cells are responsive to positively actingtrans-acting factors. Our results indicate that silent endogenous and transfected AFP genes are activated when undifferentiated F9 cells are fused to human hepatoma HepG2 cells. This suggests that the lack of AFP expression in undifferentiated F9 cells is due to the absence or insufficient level of positive-acting transcription factors, rather than the presence of dominant negative regulators. We also demonstrate that stably transfected AFP genes, although unmethylated, are properly regulated in F9 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Strickland, S., Smith, K.K., and Marotti, K.R. (1980).Cell 21:347–355.

    Article  PubMed  Google Scholar 

  2. Strickland, S., and Mahdavi, V. (1978).Cell 15:393–403.

    Article  PubMed  Google Scholar 

  3. Hogan, B.L.M., Taylor, A., and Adamson, E. (1981).Nature 291:235–237.

    Article  PubMed  Google Scholar 

  4. Dziadek, M., and Adamson, E.D. (1978).J. Embryol. Exp. Morphol. 43:289–313.

    PubMed  Google Scholar 

  5. Scott, R.W., Vogt, T.F., Croke, M.E., and Tilghman, S.M. (1984).Nature 310:562–567.

    Article  PubMed  Google Scholar 

  6. Young, P.R., and Tilghman, S.M. (1984).Mol. Cell. Biol. 4:898–907.

    PubMed  Google Scholar 

  7. Feuerman, M.H., Godbout, R., Ingram, R.S., and Tilghman, S.M. (1989).Mol. Cell. Biol. 9:4204–4212.

    PubMed  Google Scholar 

  8. Kuo, C.J., Mendel, D.B., Hansen, L.P., and Crabtree, G.R. (1991).EMBO J. 10:2231–2236.

    PubMed  Google Scholar 

  9. Masson, N., Hurst, H.C., and Lee, K.A.W. (1993).Nucleic Acids Res. 21:1163–1169.

    PubMed  Google Scholar 

  10. Lenardo, M., Staudt, L., Robbins, P., Kuang, A., Mulligan, R.C., and Baltimore, D. (1989).Science 243:544–546.

    PubMed  Google Scholar 

  11. Loh, T.P., Seivert, L.L., and Scott, R.W. (1988).J. Virol. 62:4086–4095.

    PubMed  Google Scholar 

  12. Spear, B.T., and Tilghman, S.M. (1990).Mol. Cell. Biol. 9:5047–5054.

    Google Scholar 

  13. Knowles, B.B., Howe, C.C., and Aden, D.P. (1980).Science 209:497–499.

    PubMed  Google Scholar 

  14. Kadesch, T., and Berg, P. (1986).Mol. Cell. Biol. 6:2593–2601.

    PubMed  Google Scholar 

  15. Graham, F.L., and Van der Eb, A.J. (1973).Virology 52:456–467.

    Article  PubMed  Google Scholar 

  16. Scherrer, K. (1969). InFundamental Techniques in Virology, (eds.) Habel, K., and Saltzman, N.P., (Academic Press, New York), pp. 413–432.

    Google Scholar 

  17. Scott, R.W., and Tilghman, S.M. (1983).Mol. Cell. Biol. 3:1295–1309.

    PubMed  Google Scholar 

  18. Ploegh, H., Orr, H.T., and Strominger, J.L. (1981).Cell 24:287–301.

    Article  PubMed  Google Scholar 

  19. Hammer, R.E., Krumlauf, R., Camper, S.A., Brinster, R.L., and Tilghman, S.M. (1987).Science 235:53–58.

    PubMed  Google Scholar 

  20. Krumlauf, R., Hammer, R.E., Tilghman, S.M., and Brinster, R.L. (1985).Mol. Cell. Biol. 5:1639–1648.

    PubMed  Google Scholar 

  21. Vogt, T.F., Compton, R.S., Scott, R.W., and Tilghman, S.M. (1988).Nucleic Acids Res. 16:487–500.

    PubMed  Google Scholar 

  22. Rosenthal, A., Wright, S., Cedar, H., Flavell, R., and Grosveld, F. (1984).Nature 310:416–419.

    Article  Google Scholar 

  23. Knowles, B.B., Pan, S., Solter, D., Linnenbach, A., Croce, C., and Huebner, K. (1980).Nature 288:615–618.

    Article  PubMed  Google Scholar 

  24. Stewart, C., Stuhlmann, H., Jahaner, D., and Jaenisch, R. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:4098–4102.

    PubMed  Google Scholar 

  25. Gautsch, J.W., and Wilson, M.C. (1983).Nature 301:32–37.

    Article  PubMed  Google Scholar 

  26. Blau, H.M., Pavlath, G.K., Hardeman, E.C., Chiu, C.-P., Silberstein, L., Webster, S.G., Miller, S.C., and Webster, C. (1985).Science 230:758–766.

    PubMed  Google Scholar 

  27. Baron, M.H. (1993).Curr. Opin. Cell. Biol. 5:1050–1056.

    Article  PubMed  Google Scholar 

  28. Chiu, C.-P., and Blau, H.M. (1984).Cell 37:879–887.

    Article  PubMed  Google Scholar 

  29. Tsuneizumi, K., Kume, T., Watanabe, T., Gebbink, M.F.B.G., Thomas, M.L., and Oishi, M. (1994).FEBS Lett. 347:9–12.

    Article  PubMed  Google Scholar 

  30. Okamoto, K., Okazawa, H., Okuda, A., Sakai, M., Muramatsu, M., and Hamada, H. (1990)Cell 60:461–472.

    Article  PubMed  Google Scholar 

  31. Scholer, H.R., Hatzopoulos, A.K., Balling, R., Suzuki, N., and Gruss, P. (1989).EMBO J 8:2543–2550.

    PubMed  Google Scholar 

  32. Masson, N., Ellis, M., Goodbourn, S., and Lee, K.A.W. (1992).Mol. Cell. Biol. 12:1096–1106.

    PubMed  Google Scholar 

  33. Tyner, A.L., Godbout, R., Compton, R.S., and Tilghman, S.M. (1990).J. Cell. Biol. 110:915–927.

    Article  PubMed  Google Scholar 

  34. Lai, E., Prezioso, V.R., Smith, E., Litvin, O., Costa, R.H., and Darnell, J.E.J. (1990).Genes Dev. 4:1427–1436.

    PubMed  Google Scholar 

  35. Lai, E., Prezioso, V.R., Tao, W., Chen, W.S., and Darnell, J.E.J. (1991).Genes Dev. 5:416–427.

    PubMed  Google Scholar 

  36. Groupp, E.R., Crawford, N., and Locker, J. (1994).J. Biol. Chem. 269:22178–22187.

    PubMed  Google Scholar 

  37. Jacob, A., Budhiraja, S., Qian, X., Clevidence, D., Costa, R., and Reichel, R.R. (1994).Nucleic Acids Res. 22:2126–2133.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spear, B.T., Ellis, A.W. Endogenous and transfected mouse alpha-fetoprotein genes in undifferentiated F9 cells are activated in transient heterokaryons. Somat Cell Mol Genet 21, 19–31 (1995). https://doi.org/10.1007/BF02255819

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255819

Keywords

Navigation