Skip to main content
Log in

Analysis of mutations in alleles of thefur gene from an endoprotease-deficient chinese hamster ovary cell strain

  • Published:
Somatic Cell and Molecular Genetics

Abstract

RPE. 40 mutant cells differ from wild-type Chinese hamster ovary (CHO-K1) cells in their increased resistance toPseudomonas exotoxin A and their inability to process the insulin proreceptor and certain viral envelope proproteins. Northern analysis revealed that RPE. 40 cells maintained a substantially lower steady-state level of 4.0 kbfur mRNA than did CHO-K1 cells. Analysis offur cDNAs showed that RPE. 40 cells were diploid at thefur locus, and RPE. 40 cells had a Cys (TGC) to Tyr (TAC) mutation in codon 196 of one allele (allele I). Approximately 25–30% of the CHO-K1 cells were also heterozygous (Tyr/Cys) at codon 196, and pre-mRNAs transcribed from the second allele (allele II) in RPE. 40 cells were defectively spliced. All other pre-mRNAs were correctly spliced. Rapid turnover of defectively spliced transcripts may account for the reduced steady-state level offur mRNA observed in RPE. 40 cells. Our results provide a mechanistic basis for the endoprotease-deficient phenotype of RPE. 40 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Steiner, D.F., and Oyer, P.E. (1967).Proc. Natl. Acad. Sci. U.S.A. 57:473–480.

    Google Scholar 

  2. Docherty, K., and Steiner, D.F. (1982).Annu. Rev. Physiol. 44:625–638.

    Article  PubMed  Google Scholar 

  3. Douglas, J., Civelli, O., Herbert, E. (1984).Annu. Rev. Biochem. 53:665–715.

    Article  PubMed  Google Scholar 

  4. Harris, R.B. (1989).Arch. Biochem. Biophys. 275:315–333.

    Article  PubMed  Google Scholar 

  5. Steiner, D.F., Smeekens, S.P., Ohagi, S., and Chan, S.J. (1992).J. Biol. Chem. 267:23435–23438.

    PubMed  Google Scholar 

  6. Bresnahan, P.A., Hayflick, J.S., Molloy, S.S., and Thomas, G. (1993). InMechanisms of Intracellular Trafficking and Processing of Pro-proteins, (ed.) Loh, Y.P. (CRC Press Inc., Boca Raton, Florida), pp. 225–250.

    Google Scholar 

  7. Sossin, W.S., Fisher, J.M., and Scheller, R.H. (1989).Neuron 2:1407–1417.

    Article  PubMed  Google Scholar 

  8. Barr, P.J. (1991).Cell 66:1–3.

    Article  PubMed  Google Scholar 

  9. McCune, J.M., Rabin, L.B., Feinberg, M.B., Lieberman, M., Kosek, J.C., Reyes, G.R., and Weissman, I.L. (1988).Cell 53:55–67.

    Article  PubMed  Google Scholar 

  10. Stein, B.S., and Engleman, E.G. (1990).J. Biol. Chem. 265:2640–2649.

    PubMed  Google Scholar 

  11. Watson, D.G., Moehring, J.M., and Moehring, T.J. (1991).J. Virol. 65:2332–2339.

    PubMed  Google Scholar 

  12. Inocencio, N.M., Moehring, J.M., and Moehring, T.J. (1993).J. Virol. 67:593–595.

    PubMed  Google Scholar 

  13. Hallenberger, S., Bosch, V., Angliker, H., Shaw, E., Klenk, H.-D., and Garten, W. (1992).Nature 360:358–361.

    Article  PubMed  Google Scholar 

  14. Stieneke-Grober, A., Vey, M., Angliker, H., Shaw, E., Thomas, G., Roberts, C., Klenk, H.-D., and Garten, W. (1992).EMBO J. 11:2407–2414.

    PubMed  Google Scholar 

  15. Hosaka, M., Nagahama, M., Kim, W.-S., Watanabe, T., Hatsuzawa, K., Ikemizu, J., Murakami, K., and Nakayama, K. (1991).J. Biol. Chem. 266:12127–12130.

    PubMed  Google Scholar 

  16. Molloy, S.S., Bresnahan, P.A., Leppla, S.H., Klimpel, K.R., and Thomas, G. (1992).J. Biol. Chem. 267:16396–16402.

    PubMed  Google Scholar 

  17. Julius, D., Brake, A., Blair, L., Kunisawa, R., and Thorner, J. (1984).Cell 37:1075–1089.

    Article  PubMed  Google Scholar 

  18. Fuller, R.S., Brake, A.J., and Thorner, J. (1989).Proc. Natl. Acad. Sci. U.S.A. 86:1434–1438.

    PubMed  Google Scholar 

  19. Fuller, R.S., Brake, A.J., and Thorner, J. (1989).Science 246:482–486.

    PubMed  Google Scholar 

  20. Roebroek, A.J.M., Schalken, J.A., Leunissen, J.A.M., Onnekink, C., Bloemers, H.P.J., and Van de Ven, W.J.M. (1986).EMBO J. 5:2197–2202.

    PubMed  Google Scholar 

  21. Misumi, Y., Sohda, M., and Ikehara, Y. (1990).Nucleic Acids Res. 18:6719.

    PubMed  Google Scholar 

  22. Hatsuzawa, K., Hosaka, M., Nakagawa, T., Nagase, M., Shoda, A., Murakami, K., and Nakayama, K. (1990).J. Biol. Chem. 265:22075–22078.

    PubMed  Google Scholar 

  23. Korner, J., Chun, J., O'Bryan, L., and Axel, R. (1991).Proc. Natl. Acad. Sci. U.S.A. 88:11393–11397.

    PubMed  Google Scholar 

  24. Roebroek, A.J.M., Creemers, J.W.M., Pauli, I.G.L., Bogaert, T., and Van de Ven, W.J.M. (1993).EMBO J. 12:1853–1870.

    PubMed  Google Scholar 

  25. Roebroek, A.J.M., Creemers, J.W.M., Pauli, I.G.L., Kurzik-Dumke, U., Rentrop, M., Gateff, E.A.F., Leunissen, J.A.M., and Van de Ven, W.J.M. (1992).J. Biol. Chem. 267:17208–17215.

    PubMed  Google Scholar 

  26. Bresnahan, P.A., Leduc, R., Thomas, L., Thorner, J., Gibson, H.L., Brake, A.J., Barr, P.J., and Thomas, G. (1990).J. Cell Biol. 111:2851–2859.

    Article  PubMed  Google Scholar 

  27. Rehemtulla, A., Dorner, A.J., and Kaufman, R.J. (1992).Proc. Natl. Acad. Sci. U.S.A. 89:8235–8239.

    PubMed  Google Scholar 

  28. Molloy, S.S., Thomas, L., Van Slyke, J.K., Stenberg, P.E., and Thomas, G. (1994).EMBO J. 13:18–33.

    PubMed  Google Scholar 

  29. Van de Ven, W.J.M., Voorberg, J., Fontijn, R., Pannekoek, H., Van den Ouweland, A.M.W., Van Duijnhoven, H.L.P., Roebroek, A.J.M., and Siezen, R.J. (1990).Mol. Biol. Rep. 14:265–275.

    Article  PubMed  Google Scholar 

  30. Leduc, R., Molloy, S.S., Thorne, B.A., and Thomas, G. (1992).J. Biol. Chem. 267:14304–14308.

    PubMed  Google Scholar 

  31. Kiefer, M.C., Tucker, J.E., Joh, R., Landsberg, K.E., Saltman, D., and Barr, P.J. (1991).DNA Cell Biol. 10:757–769.

    PubMed  Google Scholar 

  32. Seidah, N.G., Gaspar, L., Mion, P., Marcinkiewicz, M., Mbikay, M., and Chretien, M. (1990).DNA Cell Biol. 9:415–424.

    PubMed  Google Scholar 

  33. Smeekens, S.P., and Steiner, D.F. (1990).J. Biol. Chem. 265:2997–3000.

    PubMed  Google Scholar 

  34. Hakes, D.J., Birch, N.P., Mezey, A., and Dixon, J.E. (1991).Endocrinology 129:3053–3063.

    PubMed  Google Scholar 

  35. Nakayama, K., Kim, W.-S., Torii, S., Hosaka, M., Nakagawa, T., Ikemizu, J., Baba, T., and Murakami, K. (1992).J. Biol. Chem. 267:5897–5900.

    PubMed  Google Scholar 

  36. Nakagawa, T., Hosaka, M., Torii, S., Watanabe, T., Murakami, K., and Nakayama, K. (1993).J. Biochem. 113:132–135.

    PubMed  Google Scholar 

  37. Creemers, J.W.M., Siezen, R.J., Roebroek, A.J.M., Ayoubi, T.A.Y., Huylebroeck, D., and Van de Ven, W.J.M. (1993).J. Biol. Chem. 268:21826–21834.

    PubMed  Google Scholar 

  38. Robertson, B.J., Moehring, J.M., and Moehring, T.J. (1993).J. Biol. Chem. 268:24274–24277.

    PubMed  Google Scholar 

  39. Wise, R.J., Barr, P.J., Wong, P.A., Kiefer, M.C., Brake, A.J., and Kaufman, R.J. (1990).Proc. Natl. Acad. Sci. U.S.A. 87:9378–9382.

    PubMed  Google Scholar 

  40. Misumi, Y., Oda, K., Fujiwara, T., Takami, N., Tashiro, K., and Ikehara, Y. (1991).J. Biol. Chem. 266:16954–16959.

    PubMed  Google Scholar 

  41. Wasley, L.C., Rehemtulla, A., Bristol, J.A., and Kaufman, R.J. (1993).J. Biol. Chem. 268:8458–8465.

    PubMed  Google Scholar 

  42. Klimpel, K.R., Molloy, S.S., Thomas, G., and Leppla, S.H. (1992).Proc. Natl. Acad. Sci. U.S.A. 89:10277–10281.

    PubMed  Google Scholar 

  43. Moehring, J.M., Inocencio, N.M., Robertson, B.J., and Moehring, T.J. (1993).J. Biol. Chem. 268:2590–2594.

    PubMed  Google Scholar 

  44. Jiang, Y.-P., Wang, H., D'Eustachio, P., Musachio, J.M., Schlessinger, J., and Sap, J. (1993).Mol. Cell. Biol. 13:2942–2951.

    PubMed  Google Scholar 

  45. Kayyem, J.F., Roman, J.M., de la Rosa, E.J., Schwarz, U., and Dreyer, W.J. (1992).J. Cell Biol. 118:1259–1270.

    Article  PubMed  Google Scholar 

  46. Moehring, J.M., and Moehring, T.J. (1983).Infect. Immun. 41:998–1009.

    PubMed  Google Scholar 

  47. Mondino, A., Giordano, S., and Comoglio, P.M. (1991).Mol. Cell. Biol. 11:6084–6092.

    PubMed  Google Scholar 

  48. Komada, M., Hatsuzawa, K., Shibamoto, S., Ito, F., Nakayama, K., and Kitamura, N. (1993).FEBS Lett. 195:1019–1026.

    Google Scholar 

  49. Takahashi, S., Kasai, K., Hatsuzawa, K., Kitamura, N., Misumi, Y., Ikehara, Y., Murakami, K., and Nakayama, K. (1993).Biochem. Biophys. Res. Commun. 195:1019–1026.

    Article  PubMed  Google Scholar 

  50. Inocencio, N.M., Moehring, J.M., and Moehring, T.J. (1994).J. Biol. Chem. 269:31831–31835.

    PubMed  Google Scholar 

  51. Moehring, J.M., and Moehring, T.J. (1979).Somat. Cell Genet. 5:453–468.

    Article  PubMed  Google Scholar 

  52. Peppel, K., and Baglioni, C. (1990).Biotechniques 9:711–713.

    PubMed  Google Scholar 

  53. Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982).Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

    Google Scholar 

  54. Virca, G.D., Northemann, W., Shiels, B.R., Widera, G., and Broome, S. (1990).Biotechniques 8:370–371.

    PubMed  Google Scholar 

  55. Krawczak, M., Reiss, J., and Cooper, D.N. (1992).Hum. Genet. 90:41–54.

    Article  PubMed  Google Scholar 

  56. Steingrimsdottir, H., Rowley, G., Dorado, G., Cole, J., and Lehmann, A.R. (1992).Nucleic Acids Res. 20:1201–1208.

    PubMed  Google Scholar 

  57. Zhang, L.-H., Vrieling, H., van Zeeland, A.A., and Jenssen, D. (1992).J. Mol. Biol. 223:627–635.

    Article  PubMed  Google Scholar 

  58. Carothers, A.M., Urlaub, G., Grunberger, D., and Chasin, L.A. (1993).Mol. Cell. Biol. 13:5085–5098.

    PubMed  Google Scholar 

  59. Fisher, C.W., Fisher, C.R., Chuang, J.L., Lau, K.S., Chuang, D.T., and Cox, R.P. (1993).Am. J. Hum. Genet. 52:414–424.

    PubMed  Google Scholar 

  60. Huang, C.-H., Reid, M.E., and Blumenfeld, O.O. (1993).J. Biol. Chem. 268:4945–4952.

    PubMed  Google Scholar 

  61. Schneider, S., Wildhardt, G., Ludwig, R., and Royer-Pokora, B. (1993).Hum. Genet. 91:599–604.

    Article  PubMed  Google Scholar 

  62. Kuivaniemi, H., Kontusaari, S., Tromp, G., Zhao, M., Sabol, C., and Prockop, D.J. (1990).J. Biol. Chem. 265:12067–12074.

    PubMed  Google Scholar 

  63. Overbergh, L., Torrekens, S., Van Leuven, F., and Van den Berghe, H. (1991).J. Biol. Chem. 266:16903–16910.

    PubMed  Google Scholar 

  64. Patterson, D., Berger, R., Bleskan, J., Vannais, D., and Davidson, J. (1992).Somat. Cell Mol. Genet. 18:65–75.

    Article  PubMed  Google Scholar 

  65. Epstein, D.J., Vogan, K.J., Trasler, D.G., and Gros, P. (1993).Proc. Natl. Acad. Sci. U.S.A. 90:532–536.

    PubMed  Google Scholar 

  66. Baserga, S.J., and Benz, E.J., Jr. (1988).Proc. Natl. Acad. Sci. U.S.A. 85:2056–2060.

    PubMed  Google Scholar 

  67. Daar, I.O., and Maquat, L.E. (1988).Mol. Cell. Biol. 8:802–813.

    PubMed  Google Scholar 

  68. Brawerman, G. (1989).Cell 57:9–10.

    Article  PubMed  Google Scholar 

  69. Hatsuzawa, K., Murakami, K., and Nakayama, K. (1992).J. Biochem. 111:296–301.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by National Institutes of Health Grant AI 09100 and the Lucille P. Markey Charitable Trust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spence, M.J., Sucic, J.F., Foley, B.T. et al. Analysis of mutations in alleles of thefur gene from an endoprotease-deficient chinese hamster ovary cell strain. Somat Cell Mol Genet 21, 1–18 (1995). https://doi.org/10.1007/BF02255818

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255818

Keywords

Navigation