Skip to main content
Log in

The action mode of the ribosome-inactivating protein α-sarcin

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Based on the tertiary structure of the ribosome-inactivating protein α-sarcin, domains that are responsible for hydrolyzing ribosomes and naked RNA have been dissected. In this study, we found that the head-to-tail interaction between the first amino β-strand and the last carboxyl β-strand is not involved in catalyzing the hydrolysis of ribosomes or ribonucleic acids. Instead, a four-strand pleated β-sheet is indispensable for catalyzing both substrates, suggesting that α-sarcin and ribonuclease T1 (RNase T1) share a similar catalytic center. The integrity of an amino β-hairpin and that of the loop L3 in α-sarcin are crucial for recognizing and hydrolyzing ribosomes in vitro and in vivo. However, a mutant protein without the β-hairpin structure, or with a disrupted loop L3, is still capable of digesting ribonucleic acids. The functional involvement of the β-hairpin and the loop L3 in the sarcin stem/loop RNA of ribosomes is demonstrated by a docking model, suggesting that the two structures are in essence naturally designed to distinguish ribosome-inactivating proteins from RNase T1 to inactivate ribosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackerman EJ, Saxena SK, Ulbrich N. α-Sarcin causes a specific cut in 28S rRNA when microinjected intoXenopus oocytes. J Biol Chem 263:17076–17083;1988.

    Google Scholar 

  2. Campos-Olivas R, Bruix M, Santoro J, Martinez del Pozo A, Lacadena J, Gavilanes JG, Rico M.1H and15N nuclear magnetic resonance assignment and secondary structure of the cytotoxic ribonuclease α-sarcin. Protein Sci 5:969–972;1996.

    Google Scholar 

  3. Campos-Olivas R, Bruix M, Santoro J, Martinez del Pozo A, Lacadena J, Gavilanes JG, Rico M. Structural basis for the catalytic mechanism and substrate specificity of the ribonuclease α-sarcin. FEBS Lett 399:163–165;1996.

    Google Scholar 

  4. Chan YL, Endo Y, Wool IG. The sequence of the nucleotides at the α-sarcin cleavage site in rat 28S ribosomal ribonucleic acid. J Biol Chem 258:12768–12770;1983.

    Google Scholar 

  5. Cheung J-I, Wang Y-R, Lin A. Substrate specificity of monomeric and dimeric α-sarcin. FEBS Lett 386:60–64;1996.

    Google Scholar 

  6. Dever TE, Glynias MJ, Merrick W. GTP-binding domain: Three consensus sequence elements with distinct spacing. Proc Natl Acad Sci USA 84:1814–1818;1987.

    Google Scholar 

  7. Diaz J-J, Rhoads DD, Roufad J. PCR-mediated chemical mutagenesis of cloned duplex DNAs. Biotechniques 11:204–209;1991.

    Google Scholar 

  8. Endo Y, Wool IG. The site of action of α-sarcin on eukaryotic ribosomes. J Biol Chem 257:9054–9060;1982.

    Google Scholar 

  9. Endo Y, Huber PW, Wool IG. The ribonuclease activity of the cytotoxin α-sarcin. J Biol Chem 258:2662–2667;1983.

    Google Scholar 

  10. Endo Y, Chan Y-L, Lin A, Tsurugi K, Wool IG. The cytotoxins α-sarcin and ricin retain their specificity when tested on a synthetic oligoribonucleotide (35-mer) that mimics a region of 28 S ribosomal ribonucleic acid. J Biol Chem 263:7917–7920;1989.

    Google Scholar 

  11. Endo Y, Gluck A, Chan Y-L, Tsurugi K, Wool IG. RNA-protein interaction. An analysis with RNA oligonucleotides of the recognition by α-sarcin of a ribosomal domain critical for function. J Biol Chem 265:2216–2222;1990.

    Google Scholar 

  12. Gluck AE, Wool IG. Determination of the 28 S ribosomal RNA identity element (G4319) for alpha-sarcin and the relationship of recognition to selection of the catalytic site. J Mol Biol 256:838–848;1996.

    Google Scholar 

  13. Haun MF, Wirth M, Ruterjans J. Colorimetric investigation of thermal stability and ligand-binding characteristics of disulfide-bond-cleaved ribonuclease T1. Eur J Biochem 227:516–523;1995.

    Google Scholar 

  14. Hill C, Dodson G, Heinemann W, Saenger W, Mitsui Y, Nakamura K, Borisov S, Tischenko G, Polyakov K, Pavlovsky S. The structural and sequence homology of a family of microbial ribonucleases. Trends Biochem Sci 8:364–369;1983.

    Google Scholar 

  15. Huang K-C, Hwang Y-Y, Hwu L, Lin A. Characterization of a new ribotoxin gene (c-sar) fromAspergillus clavatus. Toxicon 35:383–392;1997.

    Google Scholar 

  16. Hwu L, Chen D-T, Lin T-H, Lin A. Residue Lys112 in the ribosome-inactivating protein influences the recognition of the sarcin domain of ribosomes, submitted.

  17. Jacquier A. Self-splicing group II and nuclear pre-mRNA introns: How similar are they? Trends Biochem Sci 15:351–354;1990.

    Google Scholar 

  18. Kao R, Davies J. Fungal ribotoxins: A family of naturally engineered targeted toxins. Biochem Cell Biol 73:1151–1169;1995.

    Google Scholar 

  19. Kao R, Shea JE, Davies J, Holden DW. Probing the active site of mitogillin, a fungal ribotoxin. Mol Microbiol 29:1019–1027;1998.

    Google Scholar 

  20. Kao R, Davies J. Molecular dissection of mitogillin reveals that the fungal ribotoxins are a family of natural genetically engineered ribonucleases. J Biol Chem 274:12576–12582;1999.

    Google Scholar 

  21. Kenan DJ, Query CC, Keene JD. RNA recognition: Towards identifying determinants of specificity. Trends Biochem Sci 16:214–220;1991.

    Google Scholar 

  22. Lacadena J, Martinez del Pozo A, Barber JL, Mancheno JM, Gasset M, Onaderra M, Lopez-Otin C, Ortega S, Garcia J, Gavilanes JG. Overproduction and purification of biologically active native fungal α-sarcin inEscherichia coli. Gene 142:147–151;1994.

    Google Scholar 

  23. Lacadena J, Mancheno JM, Martinez-Ruiz A, Martinez del Pozo A, Gasset M, Onaderra M, Gavilanes JG. Substitution of histidine-137 by glutamine abolishes the catalytic activity of the ribosome-inactivating protein α-sarcin. Biochem J 309:581–586;1995.

    Google Scholar 

  24. Lamy B, Davies J. Isolation and nucleotide sequence of theAspergillus restrictus gene coding for the ribonucleolytic toxin restrictocin and its expression inAspergillus nidulans: The leader sequence protects producing strains from suicide. Nucleic Acids Res 19:1001–1006;1991.

    Google Scholar 

  25. Liao Y-D, Wang J-J. Yolk granules are the major compartment for bullfrog (Rana catesbeiana) oocyte-specific ribonuclease. Eur J Biochem 222:215–220;1994.

    Google Scholar 

  26. Lin A, Huang R-G. Hydrolysis of ribosomes by electrophoretically blotted ribotoxin. Biotechniques 17:636–637;1994.

    Google Scholar 

  27. Lin A, Huang K-C, Hwu L, Tzean SS. Production of type II ribotoxins byAspergillus species and related fungi in Taiwan. Toxicon 33:105–110;1995.

    Google Scholar 

  28. Ling J, Liu W, Wang TP. Cleavage of supercoiled double-stranded DNA by several ribosome-inactivating proteins in vitro. FEBS Lett 345:143–146;1994.

    Google Scholar 

  29. Mancheno JM, Gasse M, Lacadena J, Martinez del Pozo A, Onaderra M, Gavilanes JG. Predictive study of the conformation of cytotoxic protein α-sarcin: A structural model to explain α-sarcin-membrane interaction. J Theor Biol 172:259–267;1995.

    Google Scholar 

  30. Martinez del Pozo A, Gasset M, Onaderra M, Gavilanes JG. Conformational study of the antitumor protein α-sarcin. Biochim Biophys Acta 953:280–288;1988.

    Google Scholar 

  31. Martinez-Oyanedel J, Choe HW, Heinemann U, Saenger W. Ribonuclease T1 with free recognition and catalytic site: Crystal structure analysis at 1.5 Å resolution. J Mol Biol 222:335–352;1991.

    Google Scholar 

  32. Miller SP, Bodley JW. α-Sarcin cleavage of ribosomal RNA is inhibited by binding of elongation factor G or thiostrepton to the ribosome. Nucleic Acids Res 19:1657–1660;1991.

    Google Scholar 

  33. Oka T, Aoyama Y, Natori Y, Katano T, Endo Y. An efficient expression system for a variant form of the cytotoxic protein α-sarcin inEscherichia coli. Biochim Biophys Acta 1130:182–188;1992.

    Google Scholar 

  34. Pace CN, Grimsley GR, Thomson JA, Barnett BJ. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J Biol Chem 263:11820–11825;1988.

    Google Scholar 

  35. Pace CN, Heinemann U, Hahn U, Saenger W. Ribonuclease T1: Structure, function, and stability. Angew Chem Int Ed Engl 30:343–360;1991.

    Google Scholar 

  36. Sacco G, Drickamer K, Wool IG. The primary structure of the cytotoxin α-sarcin. J Biol Chem 258:5811–5818;1983.

    Google Scholar 

  37. Schindler DG, Davies JE. Specific cleavage of ribosomal RNA by alpha sarcin. Nucleic Acids Res 4:1097–1110;1977.

    Google Scholar 

  38. Sevcik J, Sanishvili RG, Pavlovsky AG, Polyakov KM. Comparison of active sites of some microbial ribonucleases: Structural basis for guanylic specificity. Trends Biochem Sci 15:158–62;1990.

    Google Scholar 

  39. Steyaert J. A decade of protein engineering on ribonuclease T1: Atomic dissection of the enzyme-substrate interactions. Eur J Biochem 247:1–11;1997.

    Google Scholar 

  40. Szewczak AA, Chan YL, Moor PB, Wool IG. On the conformation of the alpha sarcin stemloop of 28S rRNA. Biochimie 78:871–877;1991.

    Google Scholar 

  41. Szewczak AA, Moore PB. The sarcin/ricin loop, a modular RNA. J Mol Biol 247:81–98;1995.

    Google Scholar 

  42. Wnendt S, Felske-Zech H, Henze P-PC, Ulbrich N, Stahl U. Characterization of the gene encoding α-sarcin, a ribosome-inactivating protein secreted byAspergillus giganteus. Gene 124:239–244;1993.

    Google Scholar 

  43. Wool IG. The mechanism of action of the cytotoxic nuclease α-sarcin and its use to analyse ribosome structure. Trends Biochem Sci 9:14–17;1984.

    Google Scholar 

  44. Wool IG, Gluck A, Endo Y. Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem Sci 17:266–269;1992.

    Google Scholar 

  45. Yang R, Kenealy W. Effects of amino-terminal extensions and specific mutations on the activity of restrictocin. J Biol Chem 267:16801–16905;1992.

    Google Scholar 

  46. Yang X, Moffat K. Insights into specificity of cleavage and mechanism of cell entry from the crystal structure of the highly specificAspergillus ribotoxin, restrictocin. Structure 4:837–852;1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwu, L., Huang, KC., Chen, DT. et al. The action mode of the ribosome-inactivating protein α-sarcin. J Biomed Sci 7, 420–428 (2000). https://doi.org/10.1007/BF02255817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255817

Key Words

Navigation