Somatic Cell and Molecular Genetics

, Volume 21, Issue 2, pp 91–98 | Cite as

Periodicity of eight nucleotides in purine distribution around human genomic CpG dinucleotides

  • Oliver Clay
  • Walter Schaffner
  • Koichi Matsuo


Mammalian genomes, unlike the genomes of Drosophila and yeast, are characterized by CpG methylation and concomitant CpG depletion, which is caused by the enhanced mutation rate of 5-methylcytosine. To find out whether local nucleotide sequences around existing methylated CpG dinucleotides have common patterns, we analyzed a large population of CpG-poor regions in human DNA, which are typically methylated. We detected a novel periodic variation in the numbers of purine bases around CpGs in the noncoding parts of these sequences. This periodicity of eight nucleotides gradually diminished over 64 nucleotides on each side of the central CpG. Furthermore, the frequencies of the 5′ and 3′ nearest neighbors of CpGs in CpG-poor regions were biased towards cytosine and guanine, respectively. Such biased sequence contexts may have helped to stabilize CpGs against depletion during mammalian evolution.


Nucleotide Mutation Rate Purine Periodic Variation Common Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Bird, A.P. (1986).Nature 321:209–213.CrossRefPubMedGoogle Scholar
  2. 2.
    Gardiner-Garden, M., and Frommer, M. (1987).J. Mol. Biol. 196:261–282.CrossRefPubMedGoogle Scholar
  3. 3.
    Matsuo, K., Clay, O., Takahashi, T., Silke, J., and Schaffner, W. (1993).Somat. Cell Mol. Genet. 19:543–555.CrossRefPubMedGoogle Scholar
  4. 4.
    Larsen, F., Gundersen, G., Lopez, R., and Prydz, H. (1992).Genomics 13:1095–1107.CrossRefPubMedGoogle Scholar
  5. 5.
    Antequera, F., and Bird, A. (1993).Proc. Natl. Acad. Sci. U.S.A. 90:11995–11999.PubMedGoogle Scholar
  6. 6.
    Brandeis, M., Frank, D., Keshet, I., Siegfried, Z., Mendelsohn, M., Nemes, A., Temper, V., Razin, A., and Cedar, H. (1994).Nature 371:435–438.CrossRefPubMedGoogle Scholar
  7. 7.
    Macleod, D., Charlton, J., Mullins, J., and Bird, A.P. (1994).Genes Dev. 8:2282–2292.PubMedGoogle Scholar
  8. 8.
    Li, E., Bestor, T.H., and Jaenisch, R. (1992).Cell 69:915–926.CrossRefPubMedGoogle Scholar
  9. 9.
    Li, E., Beard, C., and Jaenisch, R. (1993).Nature 366:362–365.CrossRefPubMedGoogle Scholar
  10. 10.
    Sved, J., and Bird, A. (1990).Proc. Natl. Acad. Sci. U.S.A. 87:4692–4696.PubMedGoogle Scholar
  11. 11.
    Bestor, T.H., Gundersen, G., Kolstø, A.-B., and Prydz, H. (1992).GATA 9:48–53.Google Scholar
  12. 12.
    Devereux, J., Haeberli, P., and Smithies, O. (1984).Nucleic Acids Res. 12:387–395.PubMedGoogle Scholar
  13. 13.
    Kernighan, B.W., and Ritchie, D.M. (1978).The C Programming Language, (Prentice Hall, Englewood Cliffs, New Jersey).Google Scholar
  14. 14.
    Cooley, J.W., and Tukey, J.W. (1965).Math. Comput. 19:297–301.Google Scholar
  15. 15.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1988).Numerical Recipes in C, (Cambridge University Press, New York).Google Scholar
  16. 16.
    Voss, R.F. (1992).Phys. Rev. Lett. 68:3805–3808.CrossRefPubMedGoogle Scholar
  17. 17.
    Kendall, M., and Ord, J.K. (1990).Time Series, 3rd ed., (Edwin Arnold, Sevenoaks, Kent), pp. 24–26.Google Scholar
  18. 18.
    Ehrlich, M., Zhang, X.-Y., and Inamdar, N.M. (1990).Mutat. Res. 238:277–286.PubMedGoogle Scholar
  19. 19.
    Shepherd, J.C.W. (1981).Proc. Natl. Acad. Sci. U.S.A. 78:1596–1600.PubMedGoogle Scholar
  20. 20.
    Voss, R.F. (1993).Phys. Rev. Lett. 71:1777.CrossRefPubMedGoogle Scholar
  21. 21.
    Aïssani, B., and Bernardi, G. (1991).Gene 106:173–183.CrossRefPubMedGoogle Scholar
  22. 22.
    Aïssani, B., and Bernardi, G. (1991).Gene 106:185–195.CrossRefPubMedGoogle Scholar
  23. 23.
    Bucher, P. (1990).J. Mol. Biol. 212:563–578.CrossRefPubMedGoogle Scholar
  24. 24.
    Frigerio, G., Burri, M., Bopp, D., Baumgartner, S., and Noll, M. (1986).Cell 47:735–746.CrossRefPubMedGoogle Scholar
  25. 25.
    Drew, H.R., and Travers, A.A. (1985).J. Mol. Biol. 186:773–790.CrossRefPubMedGoogle Scholar
  26. 26.
    Trifonov, E.N. (1987).J. Mol. Biol. 194:643–652.CrossRefPubMedGoogle Scholar
  27. 27.
    Wada, K., Wada, Y., Doi, H., Ishibashi, F., Gojobori, T., and Ikemura, T. (1991).Nucleic Acids Res. 19(Suppl):1981–1986.PubMedGoogle Scholar
  28. 28.
    Rich, A., Nordheim, A., and Wang, A.H.-J. (1984).Annu. Rev. Biochem. 53:791–846.CrossRefPubMedGoogle Scholar
  29. 29.
    Arquès, D.G., and Michel, C.J. (1990).J. Theor. Biol. 143:307–318.PubMedGoogle Scholar
  30. 30.
    Wolffe, A. (1992).Chromatin: Structure and Function, (Academic Press, London), pp. 20–23.Google Scholar
  31. 31.
    Arquès, D.G., and Michel, C.J. (1987).Nucleic Acids Res. 15:7581–7592.PubMedGoogle Scholar
  32. 32.
    MacLeod, M.C. (1993).Nucleic Acids Res. 21:1439–1447.PubMedGoogle Scholar
  33. 33.
    Bernardi, G., Olofsson, B., Filipski, J., Zerial, M., and Salinas, J., Cuny, G., Meunier-Rotival, M, and Rodier, F. (1985).Science 228:953–958.PubMedGoogle Scholar
  34. 34.
    Bernardi, G. (1993).Gene 135:57–66.CrossRefPubMedGoogle Scholar
  35. 35.
    Nelson, M., Raschke, E., and McClelland, M. (1993).Nucleic Acids Res. 21:3139–3154.PubMedGoogle Scholar
  36. 36.
    Bird, A.P., and Southern, E.M. (1978).J. Mol. Biol. 118:27–47.CrossRefPubMedGoogle Scholar
  37. 37.
    Shen, J.-C., Rideout, W.M., III, and Jones, P.A. (1994).Nucleic Acids Res. 22:972–976.PubMedGoogle Scholar
  38. 38.
    Brown, T.C., and Jiricny, J. (1987).Cell 50:945–950.CrossRefPubMedGoogle Scholar
  39. 39.
    Jost, J.-P. (1993).Proc. Natl. Acad. Sci. U.S.A. 90:4684–4688.PubMedGoogle Scholar
  40. 40.
    Mitra, R., Pettitt, B.M., Ramé, G.L., and Blake, R.D. (1993).Nucleic Acids Res. 21:6028–6037.PubMedGoogle Scholar
  41. 41.
    Krüger, T., Wild, C., and Noyer-Weidner, M. (1995).EMBO J. 14:2661–2669.PubMedGoogle Scholar
  42. 42.
    Meehan, R.R., Lewis, J.D., McKay, S., Kleiner, E.L., and Bird, A.P. (1989).Cell 58:499–507.CrossRefPubMedGoogle Scholar
  43. 43.
    Lewis, J.D., Meehan, R.R., Henzel, W.J., Maurer-Fogy, I., Jeppesen, P., Klein, F., and Bird, A., (1992).Cell 69:905–914.CrossRefPubMedGoogle Scholar
  44. 44.
    Meehan, R.R., Lewis, J.D., and Bird, A.P. (1992).Nucleic Acids Res. 20:5085–5092.PubMedGoogle Scholar
  45. 45.
    Nan, X., Meehan, R.R., and Bird, A., (1993).Nucleic Acids Res. 21:4886–4892.PubMedGoogle Scholar
  46. 46.
    Jost, J.-P., and Hofsteenge, J. (1992).Proc. Natl. Acad. Sci. U.S.A. 89:9499–9503.PubMedGoogle Scholar
  47. 47.
    Muiznieks, I., and Doerfler, W. (1994).Nucleic Acids Res. 22:2568–2575.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Oliver Clay
    • 1
  • Walter Schaffner
    • 1
  • Koichi Matsuo
    • 1
  1. 1.Insitut für Molekularbiologie der Universität ZürichZürichSwitzerland

Personalised recommendations