Skip to main content
Log in

Persistent expression of genes transferred in the fetal rat liver via retroviruses

  • Published:
Somatic Cell and Molecular Genetics

Abstract

The transfer of genes into the fetal liver is a promising approach for correction of inborn errors in metabolism identified in prenatal life. In this study, we demonstrate that gene transfer to the fetal rat liver resulted in the stable expression of the gene in the hepatocytes of the adult animals. This was achieved by a combination of gene transfer via ecotropic retroviruses in the fetal liver with subsequent partial hepatectomy of the offspring. Replication incompetent, ecotropic and amphotropic retroviruses were used to transfer the bovine growth hormone gene (bGH) linked to the promoter (−450 to +73) for the P-enolpyruvate carboxykinase (PEPCK) gene into the fetal liver in the last trimester of gestation. Amphotropic retroviruses were unable to infect the fetal liver due to the lack of expression of their receptors. The fetal liver was infected by the ecotropic retroviruses and partial hepatectomy of the offspring at one month of age stimulated expression of the PEPCK/bGH gene in the liver over ten fold. Expression of the gene persisted for as long as one year. A heterogeneous pattern of expression of the chimeric gene throughout the liver parenchymal cells was identified with higher expression in the pericentral region of the liver. This zonation of expression was not expected, since the endogenous PEPCK gene is expressed in periportal hepatocytes. We suggest that, following partial hepatectomy DNA replication activates expression of the proviral PEPCK/bGH gene, mainly in midzonal and pericentral hepatocytes. Proviral sequences may influence the expression of the PEPCK/bGH gene in parenchymal cells in which the PEPCK promoter is not normally active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Kasahara, N., Dozy, A.M., and Kan, Y.W. (1994).Science,266:1373–1375.

    Google Scholar 

  2. Johnson, J.M., and Sherman, E. (1988).Cl. Obs Gyn. 31:390–407.

    Google Scholar 

  3. Greengard, O., Federman, M., and Knox, W.E. (1972).The J. of Cell Biol.,52:261–272.

    Google Scholar 

  4. Miller, D.G., Adam, M.A., and Miller, D. (1990).Mol. Cell. Biol.,10:4239–4242.

    Google Scholar 

  5. Stuhlman, H., Cone, R., Mulligan, R.C., and Jaenish, R. (1984).Proc. Natl. Acad. Sci.,81:7151–7155.

    Google Scholar 

  6. Compere, S.J., Baldacci, P., Sharpe, A.H., Thompson, T., Land, H., and Jaenisch, R. (1989).Proc. Natl. Acad. Sci.,86:2224–2228.

    Google Scholar 

  7. Hatzoglou, M., Lamers, W., Bosch, F., Wynshaw-Boris, A., Clapp, D.W., and Hanson, R.W. (1990).The J. Biol Chem.,25:17285–17293.

    Google Scholar 

  8. Clapp, D.W., Dumenco, L.L., Hatzoglou, M., and Gerson, S.L., (1991).Blood,78:1132–1139.

    Google Scholar 

  9. McGrane, M.M., Yung, J.S., Moorman, A., Lamers, W., Hendrick, G.K., Arafah, B.M., Park, E.A., Wagner, T.E., and Hanson, R.W. (1990).The J. Biol. Chem.,265:22371–22379.

    Google Scholar 

  10. Jungermann, K. (1988).Sem. in Liver Dis. 8, 4:329–339.

    Google Scholar 

  11. Lamers, W., Hilberts, A., Furt, E., Smith, J., Geertruida, N.J., Van Noorden, C., Gaasbeek Jansen, J.W., Charles, R., and Moorman, A. (1989)Hepatology,10:72–76.

    Google Scholar 

  12. Lamers, W., Janzen, J., Kortschot, A., Charles, R., and Moorman, A. (1987).Differentiation,35:228–235.

    Google Scholar 

  13. Moorman, A., deBoer, P.A.J., Geerts, W.J.C., van de Zande, L.P.W.Z., Charles, R., and Lamers, W. (1988).J. Histochem. Cytochem.,36:751–755.

    Google Scholar 

  14. Darwin, D.S., and Campbell, J.W. (1988).Proc. Natl. Acad. Sci.,85:160–164.

    Google Scholar 

  15. Kuo, C.F., Paulson, E., and Darnell, J.E. Jr. (1988).Mol. Cell. Biol. 8:4966–4971.

    Google Scholar 

  16. Moorman, A., de Boer, P.A.J., Charjes, R., and Lamers, W.H. (1990).FEBS. 276:9–13.

    Google Scholar 

  17. Yoo-Warren, H., Monaham, J.E., Short, J., Short, H., Bruzel, A., Wynshaw-Borris, A., Meisner, H.M., Samols, S.D., and Hanson, R.W. (1983).Proc. Natl. Acad. Sci.,80:3656–3660.

    Google Scholar 

  18. Smith, D.D. Jr., and Campbell, J.W. (1988).Proc. Natl. Acad. Sci. USA,85:160–164.

    Google Scholar 

  19. Groot, C.J., van Zonneveld, A.J., Mooren, P.G., Zonneveld, D., van den Dool, A., van den Bogaert, A.J.W., Lamers, W., Moorman, A., and Charles, R. (1984).Biochem. Biophys. Res. Commun. 124:882–888.

    Google Scholar 

  20. Miller, D.G., Edwards, R.H., and Miller, A.D. (1994).Proc. Natl. Acad. Sci. U.S.A. 91:78–82.

    Google Scholar 

  21. Maniatis, T., Eritsch, E.F. and Sambrook, J. (1982).Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, N.Y.

  22. Arbritton, L.M., Tseng, L., Scadden, D., and Cunningham, J.M. (1983).Cell,57:659–666.

    Google Scholar 

  23. Wang, H., Kavanaugh, M.P., North, R.A., and Kabat, D. (1991).Nature,352:729–731.

    Google Scholar 

  24. Van Zeijl, M., Johann, S.V., Closs, E., Cunningham, J., Eddy, R., Shows, T.B., and O'Hara, B. (1994).Proc. Natl. Acad. Sci.,91:1168–1172.

    Google Scholar 

  25. Ferry, N., Duplessis, O., Houssin, D., Danos, O., and Heard, J.M. (1991).Proc. Natl. Acad. Sci.,88:8377–8381.

    Google Scholar 

  26. Kaleko, M., Garsia, J.V., and Miller, A.D. (1991).Human Gene Therapy 2:27–32.

    Google Scholar 

  27. Kay, M., Li, Q., Liu, T-J, Leland, F., Toman, C., Finegold, M., and Woo, S. (1992).Human Gene Therapy,3:641–647.

    Google Scholar 

  28. Kolodka, T.M., Finegold, M., and Woo, S.L.C. (1993).Somatic Cell and Molecular Genetics.,19:491–497.

    Google Scholar 

  29. Rettinger, S.D., Kennedy, S., Wu, X., Saylors, R.L., Hafenrichter, D.G., Flye, W., Parker Ponder, M., and Parker Ponder, K. (1994).Proc. Natl. Acad. Sci. USA. 91:1460–1464.

    Google Scholar 

  30. Bralet, M., P., Branchereau, S., Brechot, C., and Ferry, N. (1994).American Journal of Pathology.144:896–905.

    Google Scholar 

  31. Wu, J.Y., Robinson, D., Kung, H.J., and Hatzoglou, M. (1994).Journal of Virology,68:1615–1623.

    Google Scholar 

  32. Richardson, C., Ward, M., Podda, S., and Bank, A. (1994).Blood,84:433–439.

    Google Scholar 

  33. Blikkendaal-Lieftinck, L.F., Kooij, M., Kramer, M.F., and Otter, W.E. (1977).Exper., and Molec. Path.,26:184–192.

    Google Scholar 

  34. Rabes, H., Wirshing, R., Tuczek, H-V., and Iseler, G. (1976).Cell Tissue Kinet.,9:517–532.

    Google Scholar 

  35. Zajicek, G., Oren, R., and Weinreb, M. (1985).Liver,5:293–300.

    Google Scholar 

  36. Andersen, B., Zierz, S., and Jungermann, K. (1984).Histochemistry,80:97–101.

    Google Scholar 

  37. Wimmer, M., Luttringer, Ch., and Colombi, M. (1990).Histochemistry,93:257–262.

    Google Scholar 

  38. Hatzoglou, M., Park, E., Wynshaw-Boris, A., Kaung, H.C., and Hanson, R.W. (1988).The J. of Biol. Chem.,263:17798–17808.

    Google Scholar 

  39. Hatzoglou, M., Bosch, F., Park, E.A., and Hanson, R.W. (1991).The J. of Biological Chem.,266:8416–8425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatzoglou, M., Moorman, A. & Lamers, W. Persistent expression of genes transferred in the fetal rat liver via retroviruses. Somat Cell Mol Genet 21, 265–278 (1995). https://doi.org/10.1007/BF02255781

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255781

Keywords

Navigation