Skip to main content
Log in

Acute cerebral artery constriction in the spontaneously hypertensive rat following blood and plasma administration into the subarachnoid space

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

The purpose of the present study was to demonstrate, using a vascular casting technique, acute vasoconstrictive changes in the cerebral vasculature 1 h following whole-blood or plasma infusion into the subarachnoid space of conscious spontaneously hypertensive rats. Vascular casts from animals infused (over 20 min) with 0.45 ml of heparinized autologous arterial blood or plasma exhibited incomplete filling, while casts from saline-infused controls exhibited virtually no filling defects. Significant elevations in intracranial pressure were noted in blood, but not in plasma- or saline-infused rats. Two characteristic forms of constriction occurred, depending upon the vessel lumen diameter. Vessels with lumen diameters >100 µm were flattened longitudinally with deep endothelial nuclear imprints, while smaller vessels had focal circular constrictions resembling beads. Arterial cast filling terminated in vessels with lumen diameters from 70 to 20 µm with focal signs of constriction at or near the point of cast termination. The results indicate that the presence of both blood and plasma in the subarachnoid space produces acute small-artery constriction. This phenomenon is due to a noncellular blood component and does not correlate with increases in intracranial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asano T, Sano K. Pathogenic role of no-reflow phenomenon in experimental subarachnoid hemorrhage in dogs. J Neurosurg 46:454–466;1977.

    PubMed  Google Scholar 

  2. Baumbach GL, Heistad DD. Effects of sympathetic stimulation and changes in arterial pressure on segmental resistance of cerebral vessels in rabbits and cats. Circ Res 52:527–533;1983.

    PubMed  Google Scholar 

  3. Brawley BW, Strandness DE Jr, Kelly WA. The biphasic response of cerebral vasospasm in experimental subarachnoid hemorrhage. J Neurosurg 28:1–8;1968.

    PubMed  Google Scholar 

  4. Christofferson RH, Nilsson BO. Microvascular corrosion casting with analysis in the scanning electron microscope. Scanning 10:43–63;1987.

    Google Scholar 

  5. Coyle P. Outcomes to middle cerebral artery occlusion in hypertensive and normotensive rats. Hypertension 6(suppl I):I-69–I-74;1984.

    Google Scholar 

  6. Coyle P. Different susceptibilities to cerebral infarction in spontaneously hypertensive (SHR) and normotensive Sprague-Dawley rats. Stroke 17:520–525;1986.

    PubMed  Google Scholar 

  7. Delgado TJ, Arbab MA, Warberg J, Svendgaard N. The role of vasopressin in acute cerebral vasospasm: Effect on spasm of a vasopressin antagonist or vasopressin antiserum. J Neurosurg 68:266–273;1988.

    PubMed  Google Scholar 

  8. Delgado TJ, Arbab MA, Shiokawa Y, Svendgaard N. A primate model for acute and late cerebral vasospasm: Angiographic findings. Acta Neurochir (Wien) 118:130–136;1992.

    Article  Google Scholar 

  9. Doba N, Reis DJ. Localization within the lower brainstem of a receptive area mediating the pressure response to increased intracranial pressure (the Cushing response). Brain Res 47:487–491;1972.

    Article  PubMed  Google Scholar 

  10. Duverger D, MacKenzie ET. The quantification of cerebral infarction following focal ischemia in the rat: Influences of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab 8:474–485;1988.

    PubMed  Google Scholar 

  11. Duvernoy HM, Delon S, Vannson JL. Cortical blood vessels of the human brain. Brain Res Bull 7:519–579;1981.

    Article  PubMed  Google Scholar 

  12. Echlin FA. Spasm of basilar and vertebral arteries caused by experimental subarachnoid hemorrhage. J Neurosurg 23:1–11;1965.

    PubMed  Google Scholar 

  13. Echlin FA. Experimental vasospasm, acute and chronic, due to blood in the subarachnoid space. J Neurosurg 35:646–656;1971.

    PubMed  Google Scholar 

  14. Ecker A, Riemenschneider PA. Arteriographic demonstration of spasm of the intracranial arteries: With special reference to saccular arterial aneurysms. J Neurosurg 8:660–667;1951.

    PubMed  Google Scholar 

  15. Fisher CM, Roberson GH, Ojemann RG. Cerebral vasospasm with ruptured saccular aneurysm: The clinical manifestations. Neurosurgery 1:245–248;1977.

    PubMed  Google Scholar 

  16. Gannon BJ. Preparation of microvascular corrosion casting media: Procedure for partial polymerization of methyl methacrylate using ultraviolet light. Biomed Res 2:272–233;1981.

    Google Scholar 

  17. Grubb RL, Raichle ME, Phelps ME, Ratcheson RA. Effects of increased intracranial pressure on cerebral blood volume, blood flow, and oxygenation in monkeys. J Neurosurg 43:385–398;1975.

    PubMed  Google Scholar 

  18. Grubb RL, Raichle ME, Eichling JO, Gado MH. Effect of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans. J Neurosurg 46:446–453;1977.

    PubMed  Google Scholar 

  19. Hart MN. Morphometry of brain parenchymal vessels following subarachnoid hemorrhage. Stroke 11:653–655;1980.

    PubMed  Google Scholar 

  20. Heart MN, O'Donnell S. Effects of formaldehyde on fixation of basilar artery caliber. Stroke 11:99–100;1980.

    PubMed  Google Scholar 

  21. Herz DA, Baez S, Shulman K. Pial microcirculation in subarachnoid hemorrhage. Stroke 6:417–424;1975.

    PubMed  Google Scholar 

  22. Hodde KC, Nowell JA. SEM of microcorrosion casts. Scanning Electron Microsc 2:88–106;1980.

    Google Scholar 

  23. Hodde KC, Steeber DA, Albrecht RM. Advances in corrosion casting methods. Scanning Microsc 4:693–704;1990.

    PubMed  Google Scholar 

  24. Jacewicz M. The hypertensive rat and predisposition to cerebral infarction. Hypertension 19:47–48;1992.

    PubMed  Google Scholar 

  25. Jackowski A, Crockard A, Burnstock G, Russell RR, Kristek F. The time course of intracranial pathophysiology changes following experimental subarachnoid hemorrhage in the rat. J Cereb Blood Flow Metab 10:835–849;1990.

    PubMed  Google Scholar 

  26. Julow J, Ishii M, Iwabuchi T. Arachnoid villi affected by subarachnoid pressure and hemorrhage: Scanning electron microscopic study in the dog. Acta Neurochir (Wien) 51:63–72;1979.

    Article  Google Scholar 

  27. Kohno K, Sakaki S, Kumon DY, Matsuoko K. Intracellular calcium levels in canine basilar artery smooth muscle following experimental subarachnoid hemorrhage: An electron microscopic cytochemical study. Acta Neuropathol (Berl) 81:664–669;1991.

    Article  PubMed  Google Scholar 

  28. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Response of cerebral arteries and arterioles to acute hypotension. Am J Physiol 234:H371-H383;1978.

    PubMed  Google Scholar 

  29. Koyanagi I, Tator CH, Lea P. Three-dimensional analysis of the vascular system in the rat spinal cord with scanning electron microscopy of vascular corrosion casts. 2. Acute spinal cord injury. Neurosurgery 33:285–291;1993.

    PubMed  Google Scholar 

  30. Koyanagi I, Tator CH, Theriault E. Silicone rubber microangiography of acute spinal cord injury in the rat. Neurosurgery 32:260–268;1993.

    PubMed  Google Scholar 

  31. Kuwayama A, Zervas NT, Belson R, Shintni A, Pickeren K. A model for experimental cerebral arterial spasm. Stroke 3:49–56;1972.

    PubMed  Google Scholar 

  32. Lacy PS, Earle AM. A small animal model for electrocardiographic abnormalities observed after an experimental subarachnoid hemorrhage. Stroke 14:371–377;1983.

    PubMed  Google Scholar 

  33. Lametschwandter A, Lametschwandter V, Weiger T. Scanning electron microscopy of vascular corrosion casts — technique and applications: Updated review. Scanning Microsc 4:889–941;1990.

    PubMed  Google Scholar 

  34. Landaw B, Ransohoff J. Prolonged cerebral vasospasm in experimental SAH. Neurology 18:1056–1065;1968.

    PubMed  Google Scholar 

  35. Levesque MJ, Cornhill JF, Nerem RM. Vascular casting. A new method for the study of the arterial endothelium. Atherosclerosis 34:457–467;1979.

    Article  PubMed  Google Scholar 

  36. Logothetis J, Karacostas D, Karoutas G, Artermis N, Mansouri A, Milonas I. A new model of subarachnoid hemorrhage in experimental animals with the purpose to examine cerebral vasospasm. Exp Neurol 81:257–278;1983.

    Article  PubMed  Google Scholar 

  37. Maccotta V, Broggi G, Torre C, Orsi R. Injection-corrosion cast study of the microcirculation of the brain in hemorrhagic and ischemic disorders. J Neurosurg Sci 33:157–160;1989.

    PubMed  Google Scholar 

  38. Marin J, Martinez-Aldama J, Salaices M. Interference of pentobarbital and verapamil with the reactivity of middle cerebral artery of cat exposed to experimental subarachnoid hemorrhage. Gen Pharmacol 20:243–248;1989.

    PubMed  Google Scholar 

  39. Millikan CH. Cerebral vasospasm and ruptured intracranial aneurysm. Arch Neurol 32:433–449;1975.

    PubMed  Google Scholar 

  40. Motti EDF, Imhof HG, Garza JM, Yasargil GM. Vasospastic phenomena on the luminal replica of rat brain vessels. Scanning Microsc 1:207–222;1987.

    PubMed  Google Scholar 

  41. Nihei H, Kassell NF, Doughery DA, Sasaki T. Does vasospasm occur in small pial arteries and arterioles of rabbits? Stroke 22:1419–1425;1991.

    PubMed  Google Scholar 

  42. Petruk KC, West GR, Marriott MR, McIntyre JW, Overton TR, Weir BKA. Cerebral blood flow following induced subarachnoid hemorrhage in the monkey. J Neurosurg 37:316–324;1972.

    PubMed  Google Scholar 

  43. Schneck SA. On the relationship between ruptured intracranial aneurysm and cerebral infarction. Neurology 14:691–702;1964.

    PubMed  Google Scholar 

  44. Weir B, Erasmo R, Miller J, McIntyre J, Secord D, Mielke B. Vasospasm in response to repeated subarachnoid hemorrhages in the monkey. J Neurosurg 33:395–406;1970.

    PubMed  Google Scholar 

  45. Weir B, Grace M, Hansen J, Rothberg C. Time course of vasospasm in man. J Neurosurg 48:173–178;1978.

    PubMed  Google Scholar 

  46. White RP, Robertson JT. Comparison of piroxicam, meclofenamate, ibuprofen, aspirin, and prostacyclin efficacy in chronic model of cerebral vasospasm. Neurosurgery 12:40–46;1983.

    PubMed  Google Scholar 

  47. Wilkins RH, Alexander JA, Odom GL. Intracranial arterial spasm: A clinical analysis. J Neurosurg 29:121–134;1968.

    PubMed  Google Scholar 

  48. Wilkins RH, Levitt P. Intracranial arterial spasm in the dog: A chronic experimental model. J Neurosurg 33:260–269;1970.

    PubMed  Google Scholar 

  49. Zervas NT, Kuwayama A, Rosoff CB, Salzman EW. Cerebral arterial spasm: Modification by inhibition of platelet function. Arch Neurol 28:400–404;1973.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acuff, C.G., Hoskins, G., Moore, N.A. et al. Acute cerebral artery constriction in the spontaneously hypertensive rat following blood and plasma administration into the subarachnoid space. J Biomed Sci 3, 117–125 (1996). https://doi.org/10.1007/BF02255539

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255539

Key Words

Navigation