Skip to main content
Log in

Bilateral otolith contribution to spatial coding in the vestibular system

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Recent work on the coding of spatial information in central otolith neurons has significantly advanced our knowledge of signal transformation from head-fixed otolith coordinates to space-centered coordinates during motion. In this review, emphasis is placed on the neural mechanisms by which signals generated at the bilateral labyrinths are recognized as gravity-dependent spatial information and in turn as substrate for otolithic reflexes. We first focus on the spatiotemporal neuronal response patterns (i.e. one- and two-dimensional neurons) to pure otolith stimulation, as assessed by single unit recording from the vestibular nucleus in labyrinth-intact animals. These spatiotemporal features are also analyzed in association with other electrophysiological properties to evaluate their role in the central construction of a spatial frame of reference in the otolith system. Data derived from animals with elimination of inputs from one labyrinth then provide evidence that during vestibular stimulation signals arising from a single utricle are operative at the level of both the ipsilateral and contralateral vestibular nuclei. Hemilabyrinthectomy also revealed neural asymmetries in spontaneous activity, response dynamics and spatial coding behavior between neuronal subpopulations on the two sides and as a result suggested a segregation of otolith signals reaching the ipsilateral and contralateral vestibular nuclei. Recent studies have confirmed and extended previous observations that the recovery of resting activity within the vestibular nuclear complex during vestibular compensation is related to changes in both intrinsic membrane properties and capacities to respond to extracellular factors. The bilateral imbalance provides the basis for deranged spatial coding and motor deficits accompanying hemilabyrinthectomy. Taken together, these experimental findings indicate that in the normal state converging inputs from bilateral vestibular labyrinths are essential to spatiotemporal signal transformation at the central otolith neurons during low-frequency head movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson JH, Precht W. Otolith responses of extraocular muscles during sinusoidal roll tilt. Brain Res 60:150–154;1979.

    Article  Google Scholar 

  2. Angelaki DE. Two-dimensional coding of linear acceleration and the angular velocity sensitivity of the otolith system. Biol Cybern 67:511–522:1992.

    PubMed  Google Scholar 

  3. Angelaki DE. Detection of rotating gravity signals. Biol Cybern 67:523–533;1992.

    PubMed  Google Scholar 

  4. Angelaki DE, Bush GA, Perachio AA. Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons. J Neurosci 13:1403–1417;1993.

    PubMed  Google Scholar 

  5. Angelaki DE, Dickman JD. Spatiotemporal processing of linear acceleration: Primary afferent and central vestibular neuron responses. J Neurophysiol 84:2113–2132;2000.

    PubMed  Google Scholar 

  6. Angelaki DE, Hess BJM. Lesion of the nodulus and ventral uvula abolish steady-state off-vertical axis otolith response. J Neurophysiol 73:1716–1720;1995.

    PubMed  Google Scholar 

  7. Angelaki DE, Hess BJM. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation. J Neurophysiol 75:2405–2424;1996.

    PubMed  Google Scholar 

  8. Angelaki DE, McHenry MQ, Dickman JD, Hess BJ. Computation of inertial motion: Neural strategies to resolve ambiguous otolith information. J Neurosci 19:316–327;1999.

    PubMed  Google Scholar 

  9. Angelaki DE, McHenry MQ, Hess BJ. Primate translational vestibuloocular reflexes. I. High-frequency dynamics and three-dimensional properties during lateral motion. J Neurophysiol 83:1637–1647;2000.

    PubMed  Google Scholar 

  10. Angelaki DE, Newlands SD, Dickman JD. Primate translational vestibuloocular reflexes. IV. Changes after unilateral labyrinthectomy. J Neurophysiol 83:3005–3018;2000.

    PubMed  Google Scholar 

  11. Angelaki DE, Perachio AA, Mustari MJ, Strunk CL. Role of irregular otolith afferents in the steady-state nystagmus during off-vertical axis rotation. J Neurophysiol 68:1895–1900;1992.

    PubMed  Google Scholar 

  12. Baarsma EA, Collewijn H. Eye movements due to linear accelerations in the rabbit. J Physiol (Lond) 245:227–247;1975.

    PubMed  Google Scholar 

  13. Baker J, Goldberg J, Hermann G, Peterson B. Spatial and temporal response properties of secondary neurons that receive convergent input in vestibular nuclei of alert cats. Brain Res 294:138–143;1984.

    Article  PubMed  Google Scholar 

  14. Baker J, Goldberg J, Peterson B. Spatial and temporal response properties of the vestibulocollic reflex in decerebrate cats. J Neurophysiol 54:735–756;1985.

    PubMed  Google Scholar 

  15. Balaban CD, Romero GG. A role of climbing fibers in regulation of flocculonodular lobe protein kinase C expression during vestibular compensation. Brain Res 804:253–265;1998.

    Article  PubMed  Google Scholar 

  16. Baloh RW, Richman L, Yee RD, Honrubia V. The dynamics of vertical eye movements in normal human subjects. Aviat Space Environ Med 54:32–38;1983.

    PubMed  Google Scholar 

  17. Barmack NH. A comparison of the horizontal and vertical vestibulo-ocular reflexes of the rabbit. J Physiol (Lond) 314:547–564;1981.

    PubMed  Google Scholar 

  18. Barmack NH, Baughman RW, Errico P, Shojaku H. Vestibular primary afferent projection to the cerebellum of the rabbit. J Comp Neurol 327:521–534;1993.

    PubMed  Google Scholar 

  19. Bello S, Paige GD, Highstein SM. The squirrel monkey vestibulo-ocular reflex and adaptive plasticity in yaw, pitch, and roll. Exp Brain Res 87:57–66;1991.

    Article  PubMed  Google Scholar 

  20. Benson AJ, Bodin MA. Interaction of linear and angular accelerations on vestibular receptors in man. Aerosp Med 37:144–154;1966.

    PubMed  Google Scholar 

  21. Berthoz A, Anderson JH. Frequency analysis of vestibular influence on extensor motoneurons. II. Relationship between neck and forelimb extensors. Brain Res 34:376–380;1971.

    Article  PubMed  Google Scholar 

  22. Bolton PS, Goto T, Schor RH, Wilson VJ, Yamagata Y, Yates BJ. Response of pontomedullary reticulospinal neurons to vestibular stimuli in vertical planes: Role in vertical vestibulospinal reflexes of the decerebrate cat. J Neurophysiol 67:639–647;1992.

    Google Scholar 

  23. Boyle R, Goldberg JM, Highstein SM. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. III. Correlation with vestibulospinal and vestibuloocular output pathways. J Neurophysiol 68:471–484;1992.

    PubMed  Google Scholar 

  24. Boyle R, Pompeiano O. Reciprocal responses to sinusoidal tilt of neurons in Deiters' nucleus and their dynamic characteristics. Arch Ital Biol 118:1–32;1980.

    PubMed  Google Scholar 

  25. Brettler SC, Rude SA, Quinn KJ, Killian JE, Schweitzer EC, Baker JF. The effect of gravity on the horizontal and vertical vestibulo-ocular reflex in the rat. Exp Brain Res 132:434–444;2000.

    Article  PubMed  Google Scholar 

  26. Buettner UW, Henn V, Young LR. Frequency response of the vestibulo-ocular reflex (VOR) in the monkey. Aviat Space Environ Med 52:73–77;1981.

    PubMed  Google Scholar 

  27. Bush GA, Perachio AA, Angelaki DE. Encoding of head acceleration in vestibular neurons. I. Spatiotemporal response properties to linear acceleration. J Neurophysiol 69:2039–2055;1993.

    PubMed  Google Scholar 

  28. Chan YS. The coding of head orientations in neurons of bilateral vestibular nuclei of cats after unilateral labyrinthectomy: Response to off-vertical axis rotation. Exp Brain Res 114:293–303;1997.

    PubMed  Google Scholar 

  29. Chan YS, Chen CW, Lai CH. Response of medial medullary reticular neurons to otolith stimulation during bidirectional off-vertical axis rotation of the cat. Brain Res 732:159–168;1996.

    Article  PubMed  Google Scholar 

  30. Chan YS, Cheung YM. Response of otolith-related neurons in bilateral vestibular nucleus of acute hemilabyrinthectomized cats to off-vertical axis rotations. Ann NY Acad Sci 656:755–765;1992.

    PubMed  Google Scholar 

  31. Chan YS, Cheung YM, Hwang JC. Effect of tilt on the response of neuronal activity within the cat vestibular nuclei during slow and constant velocity rotation. Brain Res 345:271–278;1985.

    Article  PubMed  Google Scholar 

  32. Chan YS, Cheung YM, Hwang JC. Response characteristics of neurons in the cat vestibular nuclei during slow and constant velocity off-vertical axes rotations in the clockwise and counterclockwise directions. Brain Res 406:294–301;1987.

    Article  PubMed  Google Scholar 

  33. Chan YS, Cheung YM, Hwang JC. The influence of unilateral otolith organs on central vestibular neuronal activities in the cat. Neurosci Lett Suppl 12:S31;1983.

  34. Chan YS, Cheung YM, Hwang JC. Unit responses to bidirectional off-vertical axes rotations in central vestibular and cerebellar fastigial nuclei. Prog Brain Res 76:67–75;1988.

    Google Scholar 

  35. Chan YS, Hwang JC, Cheung YM. Crossed sacculo-ocular pathway via the Deiters' nucleus in cats. Brain Res Bull 2:1–6;1977.

    PubMed  Google Scholar 

  36. Chan YS, Lai CH. Response of bilateral vestibular nuclear neurons to otolith stimulation during off-vertical axis rotations in cats after acute hemilabyrinthectomy. J Vest Res 6:S90;1996.

    Google Scholar 

  37. Chan YS, Shum DKY, Lai CH. Neuronal response sensitivity to bidirectional off-vertical axis rotations: A dimension of imbalance in the lateral vestibular nuclei of cats after unilateral labyrinthectomy. Neuroscience 94:831–843;1999.

    Article  PubMed  Google Scholar 

  38. Chen LW, Yung KKL, Chan YS. Co-localization of NMDA receptors and AMPA receptors in neurons of the vestibular nuclei of rats. Brain Res 884:87–97;2000.

    PubMed  Google Scholar 

  39. Cohen B, Suzuki JL, Raphan T. Role of the otolith organs in generation of horizontal nystagmus: Effects of selective labyrinthine lesions. Brain Res 276:159–164;1983.

    Article  PubMed  Google Scholar 

  40. Darlington CL, Smith PF. Molecular mechanisms of recovery from vestibular damage in mammals: Recent advances. Prog Neurobiol 62:313–325;2000.

    Google Scholar 

  41. Darlot C, Denise P, Droulez J, Cohen B, Berthoz A. Eye movements induced by off-vertical axis rotation (OVAR) at small angles of tilt. Exp Brain Res 73:91–105;1988.

    Article  PubMed  Google Scholar 

  42. Darlot C, Denise P. Nystagmus induced by off-vertical rotation axis in the cat. Brain Res 73:78–90;1988.

    Article  Google Scholar 

  43. Darlot C, Toupet M, Denise P. Unilateral vestibular neuritis with otolithic signs and off-vertical axis rotation. Acta Otolaryngol 117:7–12;1997.

    PubMed  Google Scholar 

  44. Dickman JD, Angelaki DE, Correia MJ. Response properties of gerbil otolith afferents to small angle pitch and roll tilts. Brain Res 556:303–310;1991.

    Article  PubMed  Google Scholar 

  45. Dickman JD, Correia MJ. Bilateral communication between vestibular labyrinths in pigeons. Neuroscience 57:1097–1108;1993.

    Article  PubMed  Google Scholar 

  46. Dieringer N. Vestibular compensation: neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog Neurobiol 46:97–129;1995.

    Google Scholar 

  47. Endo K, Thomson DB, Wilson VJ, Yamaguchi T, Yates BJ. Vertical vestibular input to and projections from the caudal parts of the vestibular nuclei of the decerebrate cat. J Neurophysiol 74:428–436;1995.

    PubMed  Google Scholar 

  48. Epema AH, Gerrits NM, Voogd J. Secondary vestibulocerebellar projections to the flocculus and uvulonodular lobule of the rabbit: A study using HRP and double fluorescent tracer techniques. Exp Brain Res 80:72–82;1990.

    Article  PubMed  Google Scholar 

  49. Fagerson MH, Barmack NH. Responses to vertical vestibular stimulation of neurons in the nucleus reticularis gigantocellularis in rabbits. J Neurophysiol 73:2378–2391;1995.

    PubMed  Google Scholar 

  50. Fanelli R, Raphan T, Schnabolk C. Neural network modelling of eye compensation during off-vertical axis rotation. Neural Networks 3:265–276;1990.

    Article  Google Scholar 

  51. Fernandez C, Goldberg JM. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long duration centrifugal force. J Neurophysiol 39:970–984;1976.

    PubMed  Google Scholar 

  52. Fernandez C, Goldberg JM. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force response relations. J Neurophysiol 39:985–995;1976.

    PubMed  Google Scholar 

  53. Fernandez C, Goldberg JM. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol 39:996–1008;1976.

    PubMed  Google Scholar 

  54. Furman JM, Schor RH, Schumann TL. Off-vertical axis rotation: A test of the otolith-ocular reflex. Ann Otol Rhinol Laryngol 101:643–650;1992.

    PubMed  Google Scholar 

  55. Fushiki H, Barmack NH. Topography and reciprocal activity of cerebellar Purkinje cells in the uvula-nodulus modulated by vestibular stimulation. J Neurophysiol 78:3083–3094;1997.

    PubMed  Google Scholar 

  56. Gacek RR. Location of commissural neurons in the vestibular nuclei of the cat. Exp Neurol 59:479–491;1978.

    Article  PubMed  Google Scholar 

  57. Gacek RR, Khetarpal U. Neurotrophin 3, not brain-derived neurotrophic factor or neurotrophin 4, knockout mice have delay in vestibular compensation after unilateral labyrinthectomy. Laryngoscope 108:671–678;1998.

    Article  PubMed  Google Scholar 

  58. Goldberg JM. Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130:277–297;2000.

    PubMed  Google Scholar 

  59. Goldberg JM, Desmadryl G, Baird R, Fernandez C. The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. J Neurophysiol 63:781–790;1990.

    PubMed  Google Scholar 

  60. Hamann KF, Reber A, Hess BJ, Dieringer N. Long-term deficits in otolith, canal and optokinetic ocular reflexes of pigmented rats after unilateral vestibular nerve section. Exp Brain Res 118:331–340;1998.

    PubMed  Google Scholar 

  61. Hess BJ, Angelaki DE. Inertial vestibular coding of motion: Concepts and evidence. Curr Opin Neurobiol 7:860–866;1997.

    PubMed  Google Scholar 

  62. Hess BJ, Dieringer N. Spatial organization of linear vestibulo-ocular reflexes of the rat: Responses during horizontal and vertical linear acceleration. J Neurophysiol 66:1805–1818;1991.

    PubMed  Google Scholar 

  63. Hess BJ, Dieringer N. Spatial organization of the maculo-ocular reflex of the rat: Responses during off-vertical axis rotation. Eur J Neurosci 2:909–919;1990.

    PubMed  Google Scholar 

  64. Him A, Dutia MB. Intrinsic excitability changes in vestibular nucleus neurons after unilateral deafferentation. Brain Res 908:58–66;2001.

    PubMed  Google Scholar 

  65. Ikegami H, Sasaki M, Uchino Y. Connections between utricular nerve and neck flexor motoneurons of decerebrate cats. Exp Brain Res 98:373–378;1994.

    PubMed  Google Scholar 

  66. Ito J, Matsuoka I, Sasa M, Takaori S. Commissural and ipsilateral internuclear connection of vestibular nuclear complex of the cat. Brain Res 341:73–81;1985.

    PubMed  Google Scholar 

  67. Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol 34:781–792;1984.

    PubMed  Google Scholar 

  68. Iwamoto Y, Kitama T, Yoshida K. Vertical eye movement-related secondary vestibular neurons ascending in medial longitudinal fasciculus in cat. I. Firing properties and projection pathways. J Neurophysiol 63:902–917;1995.

    Google Scholar 

  69. Jensen DW. Reflex control of acute postural asymmetry and compensatory symmetry after a unilateral vestibular lesion. Neuroscience 4:1059–1073;1979.

    PubMed  Google Scholar 

  70. Jiang B, Lai CH, Chan YS. Neuronal properties of otolith-related lateral vestibular neurons in uvulo-nodular lesioned rats. In Claussen CF, Haid CT, Hofferberth B, eds. Equilibrium Research, Clinical Equilibriometry and Modern Treatment. Amsterdam, Elsevier, 49–54;2000.

    Google Scholar 

  71. Jiang B, Lai CH, Chan YS. The effect of uvulonodular lesion on neuronal properties in the lateral vestibular nucleus of rats during natural otolith stimulation. Soc Neurosci Abstr (USA) 22:661;1996.

    Google Scholar 

  72. Johnston AR, MacLeod NK, Dutia MB. Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurons. J Physiol 481:61–77;1994.

    PubMed  Google Scholar 

  73. Kamura E, Yagi T. Three-dimensional analysis of eye movements during off-vertical axis rotation in patients with unilateral labyrinthine loss. Acta Otolaryngol 121:225–228;2001.

    Article  PubMed  Google Scholar 

  74. Kasper J, Schor RH, Wilson VJ. Response of vestibular neurons to head rotations in vertical planes. I. Response to vestibular stimulation. J. Neurophysiol 60:1753–1764;1988.

    PubMed  Google Scholar 

  75. King VR, Michael GJ, Joshi RK, Priestley JV. TrkA, trkB and trkC messenger RNA expression by bulbospinal cells of the rat. Neuroscience 92:935–944;1999.

    Article  PubMed  Google Scholar 

  76. Kitahara T, Takeda N, Kiyama H, Kubo T. Molecular mechanisms of vestibular compensation in the central vestibular system — review. Acta Otolaryngol 539:19–27;1998.

    Article  Google Scholar 

  77. Kitahara T, Takeda N, Kubo T, Kiyama H. Nitric oxide in the flocculus works the inhibitory circuits after unilateral labyrinthectomy. Brain Res 815:405–409;1999.

    PubMed  Google Scholar 

  78. Kitahara T, Takeda N, Saika T, Kubo T, Kiyama H. Effects of MK801 on Fos expression in the rat brainstem after unilateral labyrinthectomy. Brain Res 700:182–190;1995.

    Article  PubMed  Google Scholar 

  79. Lacour M, Borel L, Barthelemy J, Harlay F, Xerri C. Dynamic properties of the vertical otolith neck reflexesin the alert cat. Exp Brain Res 65:559–568;1987.

    Article  PubMed  Google Scholar 

  80. Lacour M, Manzoni D, Pompeiano O, Xerri C. Central compensation of vestibular deficits. III. Response characteristics of lateral vestibular neurons to roll tilt after contralateral labyrinth deafferentation. J Neurophysiol 54:988–1005;1985.

    PubMed  Google Scholar 

  81. Lai CH. Postnatal development of otolith neurons in the vestibular nucleus of rats. PhD thesis, The University of Hong Kong, 1999.

  82. Lai CH, Chan YS. Development of the vestibular system. Neuroembryology 1:61–71;2002.

    Article  Google Scholar 

  83. Lai CH, Chan YS. Postnatal development of resting discharge of otolith neurons in rat vestibular nucleus. In Claussen CF, Haid CT, Hofferberth B, eds. Equilibrium Research, Clinical Equilibriometry and Modern Treatment. Amsterdam, Elsevier, 17–21;2000.

    Google Scholar 

  84. Lai CH, Chan YS. Properties of otolith-related vestibular nuclear neurons in response to bidirectional off-vertical axis rotation of the rat. Brain Res 693:39–50;1995.

    PubMed  Google Scholar 

  85. Lai CH, Chan YS. Spontaneous activity of otolith-related vestibular nuclear neurons in the decerebrate rat. Brain Res 739:322–329;1996.

    Article  PubMed  Google Scholar 

  86. Lai CH, Chan YS. Spontaneous discharge and response characteristics of central otolith neurons of rats during postnatal development. Neuroscience 103:275–288;2001.

    PubMed  Google Scholar 

  87. Leigh RJ, Zee DS. The Neurology of Eye Movements. FA Davis, Philadelphia, 1991.

    Google Scholar 

  88. MacPherson JM. Strategies that simplify the control of quadrupedal stance; 2: Electromyographic activity. J Neurophysiol 60:218–231;1988.

    PubMed  Google Scholar 

  89. Manzoni D, Andre P, Pompeiano O. Changes in gain and spatiotemporal properties of the vestibulospinal reflex after injection of a GABA-A agonist in the cerebellar anterior vermis. J Vestib Res 7:7–20;1997.

    PubMed  Google Scholar 

  90. Manzoni D, Andre P, Pompeiano O. Contribution of the cerebellar anterior vermis to the gain and spatiotemporal properties of the vestibulospinal reflex: A behavioural and cellular analysis. Arch Ital Biol 138:217–227;2000.

    PubMed  Google Scholar 

  91. Manzoni D, Andre P, Pompeiano O. Responses of Purkinje cells in the cerebellar anterior vermis to off-vertical axis rotation. Pflügers Arch 431:141–154;1995.

    Article  Google Scholar 

  92. Mayne R. A systems concept of the vestibular organs. In: Kornhuber HH, ed. Handbook of Sensory Physiology, Vol. 6/2. New York, Springer, 439–580;1974.

    Google Scholar 

  93. Mossman S, Halmagyi GM. Partial ocular tilt reaction due to unilateral cerebellar lesion. Neurology 49:491–493;1997.

    PubMed  Google Scholar 

  94. Newlands SD, Perachio AA. Compensation of horizontal canal related activity in the medial vestibular nucleus following unilateral labyrinth ablation in the decerebrate gerbil. I. Type I neurons. Exp Brain Res 82:359–372;1990.

    PubMed  Google Scholar 

  95. Niklasson M, Tham R, Larsby B, Eriksson B. The influence of visual and somatosensory input on the vestibulo-oculomotor reflex of pigmented rats. J Vestib Res 1:251–262;1990.

    PubMed  Google Scholar 

  96. Paige GD. Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. I. Response characteristics in normal animals. J Neurophysiol 49:134–151;1983.

    Google Scholar 

  97. Paige GD, Tomko DL. Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. J Neurophysiol 65:1170–1182;1991.

    PubMed  Google Scholar 

  98. Pantle C, Wadan K, Dieringer N. Direction-specific differences in the magnitude of abducens nerve responses during off-vertical axis rotation are a basic property of the utriculo-ocular reflex in frogs. Exp Brain Res 53:197–216;1995.

    Google Scholar 

  99. Perachio AA. Responses of neurons in the vestibular nuclei of awake squirrel monkeys during linear acceleration. In: Gualtierotti T, ed. The Vestibular System: Function and Morphology. New York, Springer, 443–451;1981.

    Google Scholar 

  100. Perachio AA, Bush GA, Angelaki DE. A model of responses of horizontal-canal-related vestibular nuclei neurons that response to linear head acceleration. Ann NY Acad Sci 656:795–801;1992.

    PubMed  Google Scholar 

  101. Perlmutter SI, Iwamoto Y, Baker JF, Peterson BW. Spatial alignment of rotational and static tilt responses of vestibulospinal neurons in the cat. J Neurophysiol 82:855–862;1999.

    PubMed  Google Scholar 

  102. Pompeiano O. Neck and macular labyrinthine influences on the cervical spinoreticulocerebellar pathway. Prog Brain Res 50:501–514;1979.

    Google Scholar 

  103. Pompeiano O, Andre P, Manzoni D. Spatiotemporal response properties of cerebellar Purkinje cells to animal displacement: a population analysis. Neuroscience 81:609–626;1997.

    Article  PubMed  Google Scholar 

  104. Precht W, Shimazu H, Markham CH. A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J Neurophysiol 29:996–1010;1966.

    PubMed  Google Scholar 

  105. Precht W, Volkind R, Maeda M, Giretti ML. The effects of stimulating the cerebellar nodulus in the cat on the responses of vestibular neurons. Neuroscience 1:301–312;1976.

    PubMed  Google Scholar 

  106. Raphan T, Matsuo V, Cohen B. Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35:229–248;1979.

    Article  PubMed  Google Scholar 

  107. Raphan T, Schnabolk C. Modeling slow phase velocity generation during off-vertical axis rotation. Ann NY Acad Sci 545:29–50;1988.

    PubMed  Google Scholar 

  108. Reisine H, Raphan T. Neural basis for eye velocity generation in the vestibular nuclei of alert monkeys during off-vertical axis rotation. Exp Brain Res 92:209–226, 1992.

    PubMed  Google Scholar 

  109. Ris L, Capron B, de Waele C, Vidall PP, Godaux E. Dissociations between behavioural recovery and restoration of vestibular activity in the unilabyrinthectomized guineapig. J Physiol (Lond) 500:509–522;1997.

    PubMed  Google Scholar 

  110. Ris L, Capron B, Vibert N, Vidall PP, Godaux E. Modification of the pacemaker activity of vestibular neurons in brainstem slices during vestibular compensation in the guinea pig. Eur J Neurosci 13:2234–2240;2001.

    Article  PubMed  Google Scholar 

  111. Ris L, Godaux E. Neuronal activity in the vestibular nuclei after contralateral or bilateral labyrinthectomy in the alert guinea pig. J Neurophysiol 80:2352–2367;1998.

    PubMed  Google Scholar 

  112. Ris L, de Waele C, Serafin M, Vidal PP, Godaux E. Neuronal activity in the ipsilateral vestibular nucleus following unilateral labyrinthectomy in the alert guinea pig. Exp Brain Res 74:2087–2099;1995.

    Google Scholar 

  113. Ris L, Wattiez R, de Waele C, Vidal PP, Godaux E. Reappearance of activity in the vestibular neurones of labyrinthectomized guinea-pigs is not delayed by cycloheximide. J Physiol (Lond) 512:533–541;1998.

    Article  PubMed  Google Scholar 

  114. Robinson DA. Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol 39:954–969;1976.

    PubMed  Google Scholar 

  115. Ross MD. Morphological evidence for parallel processing of information in rat macula. Acta Otolaryngol 106:213–218;1988.

    PubMed  Google Scholar 

  116. Rossiter CD, Hayden NL, Stocker SD, Yates BJ. Changes in outflow to respiratory pump muscles produced by natural vestibular stimulation. J Neurophysiol 76:3274–3284;1996.

    Google Scholar 

  117. Sans N, Sans A, Raymond J. Regulation of NMDA receptor subunit mRNA expression in the guinea pig vestibular nuclei following unilateral labyrinthectomy. Eur J Neurosci 9:2019–2034;1997.

    PubMed  Google Scholar 

  118. Sato H, Endo K, Ikegami H, Imagawa M, Sasaki M, Uchino Y. Properties of utricular nerve-activated vestibulospinal neurons in cats. Exp Brain Res 112:197–202;1996.

    Article  PubMed  Google Scholar 

  119. Sato H, Imagawa M, Isu N, Uchino Y. Properties of saccular nerve-activated vestibulospinal neurons in cats. Exp Brain Res 116:381–388;1997.

    PubMed  Google Scholar 

  120. Sato H, Imagawa M, Kushiro K, Zakir M, Uchino Y. Convergence of posterior semicircular canal and saccular inputs in single vestibular nuclei neurons in cats. Exp Brain Res 131:253–261;2000.

    Article  PubMed  Google Scholar 

  121. Schor RH, Miller AD. Vestibular reflexes in neck and forelimb muscles evoked by roll tilt. J Neurophysiol 46:167–178;1981.

    PubMed  Google Scholar 

  122. Schor RH, Miller AD, Timerick SJB, Tomko DL. Responses to head tilt in cat central vestibular neurons. I. Frequency dependence of neuronal response vectors. J Neurophysiol 53:1444–1452;1985.

    PubMed  Google Scholar 

  123. Schor RH, Miller AD, Tomko DL. Responses to head tilt in cat central vestibular neurons. I. Direction of maximum sensitivity. J Neurophysiol 51:136–146;1984.

    Google Scholar 

  124. Schor RH, Steinbacher BC, Yates BJ. Horizontal linear and angular responses of neurons in the medial vestibular nucleus of the decerebrate cat. J Vestib Res 8:107–116;1998.

    PubMed  Google Scholar 

  125. Seidman SH, Telford L, Paige GD. Tilt perception during dynamic linear acceleration. Exp Brain Res 119:307–314;1998.

    PubMed  Google Scholar 

  126. Serafin M, de Waele C, Khateb A, Vidal PP, Muhlethaler M. Medial vestibular nucleus in the guinea pig. I. Intrinsic membrane properties in brainstem slices. Exp Brain Res 84:417–425;1991a.

    PubMed  Google Scholar 

  127. Serafin M, de Waele C, Khateb A, Vidal PP, Muhlethaler M. Medial vestibular nucleus in the guinea pig. II. Ionic basis of the intrinsic membrane properties in brainstem slices. Exp Brain Res 84:426–433;1991b.

    PubMed  Google Scholar 

  128. Shimazu H, Precht W. Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J Neurophysiol 29:467–492;1966.

    PubMed  Google Scholar 

  129. Shimazu H, Smith GM. Cerebellar and labyrinthine influences on single vestibular neurons identified by natural stimuli. J Neurophysiol 34:493–508;1971.

    PubMed  Google Scholar 

  130. Shinoda Y, Sugiuchi Y, Futami T, Ando, N, Kawasaki T. Input patterns and pathways from the six semicircular canals to motoneurons of neck muscles. I. The mutifidus muscle group. J Neurophysiol 72:2691–2702;1994.

    PubMed  Google Scholar 

  131. Shinoda Y, Sugiuchi Y, Futami T, Ando, N, Yagi J. Input patterns and pathways from the six semicircular canals to motoneurons of neck muscles. II. The longissimus and semispinalis muscle groups. J Neurophysiol 77:1234–1253;1997.

    PubMed  Google Scholar 

  132. Skavenski AA, Robinson DA. Role of abducens neurons in vestibuloocular reflex. J Neurophysiol 36:724–738;1973.

    Google Scholar 

  133. Smith PF, Curthoys IS. Mechanisms of recovery following unilateral labyrinthectomy: A review. Brain Res Rev 14:155–180;1989.

    Article  PubMed  Google Scholar 

  134. Smith PF, Curthoys IS. Neuronal activity in the ipsilateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res 444:308–319;1988.

    Article  PubMed  Google Scholar 

  135. Smith PF, Darlington CL. The contribution of NMDA receptors to lesion-induced plasticity in the vestibular nucleus. Prog Neurobiol 53:517–531;1997.

    Google Scholar 

  136. Sugiuchi Y, Izawa Y, Shinoda Y. Trisynaptic inhibition from the contralateral vertical semicircular canal nerves to neck motoneurons mediated by spinal commissural neurons. J Neurophysiol 73:1973–1987;1995.

    PubMed  Google Scholar 

  137. Telford L, Seidman SH, Paige GD. Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance. J Neurophysiol 78:1775–1790;1997.

    PubMed  Google Scholar 

  138. Thunnissen IE, Epema AH, Gerrits NM. Secondary vestibulocerebellar mossy fiber projection to the cadual vermis in the rabbit. J Comp Neurol 290:262–277;1989.

    Article  PubMed  Google Scholar 

  139. Tomko DL, Peterka RJ, Schor RH. Responses to head tilt in cat eigth nerve afferents. Exp Brain Res 41:216–221;1981.

    Article  PubMed  Google Scholar 

  140. Uchino Y, Isu N, Sakuma A, Ichikawa T, Hiranuma K. Axonal trajectories of inhibitory vestibulocollic neurons activated by the anterior semicircular canal nerve and their synaptic effects on neck motoneurons in the cat. Exp Brain Res 82:14–24;1990.

    Article  PubMed  Google Scholar 

  141. Uchino Y, Sato H, Kushiro M, Zakir M, Imagawa M, Ogawa Y, Katsuta M, Isu N. Cross-striolar and commissural inhibition in the otolith system. Ann NY Acad Sci 871:162–172;1999.

    PubMed  Google Scholar 

  142. Uchino Y, Sato H, Kushiro M, Zakir M, Isu N. Canal and otolith inputs to single vestibular neurons in cats. Arch Ital Biol 138:3–13;2000.

    PubMed  Google Scholar 

  143. Uchino Y, Sato H, Suwa H. Excitatory and inhibitory inputs from saccular afferents to single vestibular neurons in the cat. J Neurophysiol 78:2186–2192;1997.

    PubMed  Google Scholar 

  144. Vibert N, Babalian A, Serafin M, Gasc JP, Muhlethaler M, Vidal PP. Plastic changes underlying vestibular compensation in the guinea-pig persist in isolated, in vitro whole brain preparations. Neuroscience 93:413–432;1999.

    Article  PubMed  Google Scholar 

  145. Vibert N, de Waele C, Escudero M, Vidal PP. The horizontal vestibulo-ocular reflex in the hemilabyrinthectomized guinea-pig. Exp Brain Res 97:263–273;1993.

    Article  PubMed  Google Scholar 

  146. Vidal PP, Babalian A, de Waele C, Serafin M, Vibert N, Muhlethaler M. NMDA receptors of the vestibular nuclei neurones. Brain Res Bull 40:347–352;1996.

    Article  PubMed  Google Scholar 

  147. Vidal PP, de Waele C, Vibert N, Muhlethaler M. Vestibular compensation revisited. Otolaryngol Head/Neck Surg 119:34–42;1998.

    Article  Google Scholar 

  148. de Waele C, Graf W, Josset P, Vidal PP. A radiological analysis of the postural syndromes following hemilabyrinthectomy and selective canal and otolith lesions in the guinea pig. Exp Brain Res 77:166–182;1989.

    Article  PubMed  Google Scholar 

  149. Walberg F, Dietrichs E. The interconnection between the vestibular nuclei and the nodulus: A study of reciprocity. Brain Res 449:47–53;1988.

    Article  PubMed  Google Scholar 

  150. Wiener-Vacher SR, Mazda K. Asymmetric otolith vestibulo-ocular responses in children with idiopathic scoliosis. J Pediatr 132:1028–1032;1998.

    Article  PubMed  Google Scholar 

  151. Wilson VJ, Boyle R, Fukushima K, Rose PK, Shinoda Y, Sugiuchi Y, Uchino Y. The vestibulocollic reflex. J Vestib Res 5:147–1770;1995.

    Article  PubMed  Google Scholar 

  152. Wilson VJ, Gacek RR, Uchino Y, Susswein AJ. Properties of central vestibular neurons fired by stimulation of the saccular nerve. Brain Res 143:251–261;1978.

    Article  PubMed  Google Scholar 

  153. Wilson VJ, Ikegami H, Schor RH, Thomson DB. Tilt responses of neurons in the caudal descending nucleus of the decerebrate cat: Influence of the caudal cerebellar vermis and of neck receptors. J Neurophysiol 75:1242–1249;1996.

    PubMed  Google Scholar 

  154. Wilson VJ, Jones GM. Mammalian Vestibular Physiology. New York, Plenum. 1979.

    Google Scholar 

  155. Wilson VJ, Maeda M. Connection between semicircular canals and neck motorneurons in the cat. J Neurophysiol 37:346–357;1974.

    Google Scholar 

  156. Wilson VJ, Schor RH, Suzuki I, Park BR. Spatial organization of neck and vestibular reflexes acting on the forelimbs of the decerebrate cat. J Neurophysiol 55:514–526;1986.

    PubMed  Google Scholar 

  157. Wilson VJ, Yamagata Y, Yates BJ, Schor RH, Nonaka S. Response of vestibular neurons to head rotations in vertical planes. III. Response of vestibulocollic neurons to vesibular and neck stimulation. J Neurophysiol 64:1695–1703;1990.

    PubMed  Google Scholar 

  158. Xerri C, Gianni S, Manzoni D, Pompeiano O. Central compensation of vestibular deficits. I. Response characteristics of lateral vestibular neurons to roll tilt after ipsilateral labyrinth deafferentation. J Neurophysiol 50:428–448;1983.

    PubMed  Google Scholar 

  159. Yates BJ, Miller AD. Properties of sympathetic reflexes elicited by natural vestibular stimulation: Implications for cardiovascular control. J Neurophysiol 71:2087–2092;1994.

    PubMed  Google Scholar 

  160. Yen JC, Chan SH. Interchangeable discharge patterns of neurons in caudal nucleus tractus solitarii in rat slices: Role of GABA and NMDA. J Physiol (Lond) 504:611–627;1997.

    Article  PubMed  Google Scholar 

  161. Zakir M, Kushiro K, Ogawa Y, Sato H, Uchino Y. Convergence patterns of the posterior semicircular canal and utricular inputs in single vestibular neurons in cats. Exp Brain Res 132:139–148;2000.

    Article  PubMed  Google Scholar 

  162. Zhang H, Zakir M, Meng H, Sato H, Uchino Y. Convergence of horizontal semicircular canal and otolith afferents on cat single vestibular neurons. Exp Brain Res 140:1–11;2001.

    Article  PubMed  Google Scholar 

  163. Zennou-Azogui Y, Borel L, Lacour M, Ez-Zaher L, Ouaknine M. Recovery of head postural control following unilateral vestibular and neuronal correlates in Deiters' nuclei. Acta Otolaryngol Suppl 509:1–19;1993.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, Y.S., Lai, C.H. & Shum, D.K.Y. Bilateral otolith contribution to spatial coding in the vestibular system. J Biomed Sci 9, 574–586 (2002). https://doi.org/10.1007/BF02254985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02254985

Keywords

Navigation