Mechanics of Composite Materials

, Volume 32, Issue 3, pp 286–291 | Cite as

Electromechanical properties of laminated piezoelectric composites

  • Reinaldo Rodriquez Ramos
  • Jose A. Otero Hernandez
  • Julian Bravo Castillero
  • Federico J. Sabina


The general expressions for the effective elastic, piezoelectric, and dielectric coefficients of a laminated piezocomposite composed of laminates in parallel connection are shown. By means of the asymptotic averaging method [12] these effective coefficients are calculated. The effective coefficients as well as physical properties such as electromechanical piezoelectric coupling coefficients, acoustic impedance, and wave velocity for a two-phase composite, where one phase is ceramic and the other one is polymer, are analyzed. A comparison with another results is shown.


Polymer General Expression Wave Velocity Average Method Coupling Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Newnham, A. Safari, J. Giniewicz and B. H. Fox, “Composite piezoelectric sensors,” Ferroelectrics,60, 15–21 (1984).Google Scholar
  2. 2.
    T. R. Guraraja, A. Safari, R. E. Newnham, and L. E. Cross. “Piezoelectric ceramic-polymer composites for transducer applications,” in: Electronic Ceramics, L. M. Levinson (ed.), Marcel Dekker, New York (1987), pp. 92–128.Google Scholar
  3. 3.
    W. A. Smith, “The role of piezocomposites in ultrasonic transducers,” Proc. IEEE Ultrason. Symp. (1989), pp. 755–766.Google Scholar
  4. 4.
    H. Takeuchi and C. Nakaya, “Polymer composites for medical ultrasonic probes,” Ferroelectrics,68, 53–61 (1986).Google Scholar
  5. 5.
    T. R. Gururaja, W. A. Schulze, L. E. Cross, R. E. Newnham, B. A. Auld, and Y. J. Wang, “Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites,” IEEE Trans. Sonics. Ultrason., SU-32, 481–498 (1985).Google Scholar
  6. 6.
    T. R. Gururaja, W. A. Schulze, and L. E. Cross, “Piezoelectric composite materials for ultrasonic transducer applications. Part II,” IEEE Trans. Sonics. Ultrason., SU-32, No. 4, 499–513 (1985).Google Scholar
  7. 7.
    W. A. Smith and B. A. Auld. “Modeling 1–3 composite piezoelectrics: thickness-mode oscillations,” IEEE Trans. Ultrason. Ferroelect. Freq. Control,38, No. 1 (1991).Google Scholar
  8. 8.
    H. L. W. Chan and J. Unsworth, “Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications,” IEEE Trans. Ultrason. Ferroelect. Freq. Control,36, 434–441 (1989).Google Scholar
  9. 9.
    Y. Benveniste and G. J. Dvorak, “Uniform fields and universal relations in piezoelectric composites,“ J. Mech. Phys. Solids,40, 1295–1312 (1992).Google Scholar
  10. 10.
    A. A. Grekov, S. O. Kramarov, and A. A. Kuprienko, “Anomalous behavior of the two-phase lamellar piezoelectric texture,” Ferroelectrics,76, 43–48 (1987).Google Scholar
  11. 11.
    A. Bourgeat, R. Rodriquez, J. A. Otero, and J. Bravo, submitted for publication (1994).Google Scholar
  12. 12.
    B. E. Pobedria, Mechanics of Composite Materials [in Russian], Moscow State University Press, Moscow (1984).Google Scholar
  13. 13.
    K. Schulgasser, “Relationships between the effective properties of transversely isotropic piezoelectric composites,” J. Mech. Phys. Solids,40, 473–479 (1992).Google Scholar
  14. 14.
    Y. Benveniste and G. J. Dvorak, in: Micromechanics and Inhomogeneity. The Toshio Mura 65th Anniversary Volume, G. J. Weng, M. Taya, and H. Abe (eds.), Springer, New York (1990a), p. 65.Google Scholar
  15. 15.
    Y. Benveniste and G. J. Dvorak, in: Inelastic Deformation of Composite materials, IUTAM Symp., G. J. Dvorak (ed.), Springer, New York (1990b), p. 77.Google Scholar
  16. 16.
    V. A. Mol'kov, “Variational principles for electroelastic bodies with an inhomogeneous structure,” Mekh. Tverd. Tela, No. 3, 109–117 (1992).Google Scholar
  17. 17.
    R. Karalyunas, “Averaging the equations for thermopiezoelectric composites,” Litovskii Mat. Sb., 30, No. 1, 56–70 (1990).Google Scholar
  18. 18.
    H. Taunaumany, I. L. Guy, and H. L. W. Chan “Electromechanical properties of 1–3 piezoelectric ceramic/piezoelectric polymer composites,” J. Appl. Phys.,76(1), 484–489 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Reinaldo Rodriquez Ramos
    • 1
  • Jose A. Otero Hernandez
    • 1
  • Julian Bravo Castillero
    • 1
  • Federico J. Sabina
    • 2
  1. 1.Institute of Cybernetics, Mathematics, and Physics (ICIMAP) Acoustic GroupHavanaCuba
  2. 2.Instituto de Matematicas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations