Georgian Mathematical Journal

, Volume 1, Issue 3, pp 251–266 | Cite as

Two-dimensional problems of stationary flow of a noncompressible viscous fluid in the case of Ossen's linearization

  • T. Buchukuri
  • R. Chichinadze
Article

Abstract

Two-dimensional boundary value problems of flow of a viscous micropolar fluid are investigated in the case of linearization by Oseen's method.

1991 Mathematics Subject Classification

76A05 35Q20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.W. Condiff and J.S. Dahler, Fluid mechanical aspects of antisymmetric stress.Physics of Fluids.7(1964), No. 6, 842–854.CrossRefGoogle Scholar
  2. 2.
    A.C. Eringen, Theory of micropolar fluids.J. Math. Mech. 16(1966), No. 1, 1–18.Google Scholar
  3. 3.
    T.V. Buchukuri and R.K. Chichinadze, Boundary value problems of stationary flow of a viscous noncompressible micropolar fluid in the case of linearization by Oseen's method. (Russian)Trudy Tbiliss. Mat. Inst. Razmadze,96(1991), 29–60.Google Scholar
  4. 4.
    R.K. Chichinadze, Two-dimensional problems of stationary flow of a viscous noncompressible micropolar fluid. (Russian)Soobshch. Akad. Nauk Gruzin. SSR,121(1986), No. 3, 485–488.Google Scholar
  5. 5.
    R.K. Chichinadze, Boundary value problems for stationary flow of a viscous noncompressible micropolar fluid. (Russian)Trudy Tbiliss. Mat. Inst. Razmadze,75(1984), 111–132.Google Scholar
  6. 6.
    V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili and T.V. Burchuladze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. (Translation from the Russian)North-Holland Publishing Company, 1979; Russian original: “Nauka,” Moscow, 1976.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • T. Buchukuri
    • 1
  • R. Chichinadze
    • 1
  1. 1.A. Razmadze Mathematical InstituteGeorgian Academy of SciencesTbilisiRepublic of Georgia

Personalised recommendations