Mechanics of Composite Materials

, Volume 34, Issue 6, pp 575–582 | Cite as

Laser ultrasonic investigation of the elastic properties of unidirectional graphite-epoxy composites

  • A. A. Karabutov
  • I. M. Kershtein
  • I. M. Pelivanov
  • N. B. Podymova


An ultrasonic method is proposed for the determination of the elastic constants of orthotropic solids with a laser source of ultrasound and wide-band registration of acoustic pulses. The propagation of acoustic transients in unidirectional fiber-reinforced graphite-epoxy composites is investigated. The experimental data show that the model of orthotropic solids is valid for the description of the mechanical properties of these materials. The absence of frequenc dispersion of the phase velocity in the spectral range of 1–15 MHz for every direction of propagation of ultrasound waves in the composite was confirmed. A complete set of elastic constants of unidirectional fiber-reinforced graphite-epoxy composites is calculated.


Experimental Data Mechanical Property Spectral Range Elastic Property Elastic Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



principal axes of a 1D graphite-epoxy (GE) composite,i=1, 2, 3,


axis of symmetry


thickness of a specimen, m


wave vector of the acoustic wave

v1, v2, v3

direction cosines of the wave vector


normal vector to the surface of a specimen


normal vector to the incidence plane (nk)


incidence angle of the acoustic wave to the specimen, rad


refraction angle of the acoustic wave at the interface of immersion medium and compsite, rad


angle between the normal n1 to the incidence plane (nk) and the direction of fibers in composite x1, rad


frequency of the acoustic wave, Hz


phase velocity of the acoustic wave in the tested specimen, m/s


phase velocity of the longitudinal acoustic wave in the immersion medium, m/s

QL, QT, L, andT

quasi-longitudinal, quasi-shear, longitudinal, and shear waves, respectively


phase difference between the frequency harmonicsf of reference and tested signals, rad


density of a 1D GE composite, kg/m3


full and abbreviated notation of the stiffness matrix, Pa, and Γ il tensor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Hashin, “The elastic moduli of heterogeneous materials,” J. Appl. Mech.,29, 143–151 (1962).Google Scholar
  2. 2.
    Z. Hashin and B. W. Rosen, “The elastic moduli of fiber-reinforced materials,” J. Appl. Mech.,31, 223–232 (1964).Google Scholar
  3. 3.
    Z. Hashin, “Viscoelastic fiber reinforced materials,” AIAA J.,4, 1411–1420 (1966).Google Scholar
  4. 4.
    W. B. Rassel, “On the effective moduli of composite materials effect of fiber length and geometry at dilute concentrations,” Z. Angew. Math. Phys.,24, 581–588 (1973).Google Scholar
  5. 5.
    A. H. Nayfeh and R. L. Crane, “Reflection of acoustic waves from water/composite interfaces,” J. Appl. Phys.,55, No. 3, 685–689 (1984).Google Scholar
  6. 6.
    E. Dielessant and D. Royet, Elastic Waves in Solid Bodies [Russian translation], Nauka, Moscow (1982).Google Scholar
  7. 7.
    G. I. Petrashen', Wave Propagation in Anisotropic Elastic Media [in Russian], Nauka, Leningrad (1980).Google Scholar
  8. 8.
    R. M. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York (1979).Google Scholar
  9. 9.
    B. Hosten and M. Deschamps, “Inhomogeneous wave generation and propagation in lossy anistropic solids. Application to the characterisation of viscoelastic composite materials,” J. Acoust. Soc. Amer.,82, No. 5, 1763–1770 (1987).Google Scholar
  10. 10.
    B. Hosten, “Reflection and transmission of acoustic plane waves on an immersed orthotropic and viscoelastic solid layer,” J. Acoust. Soc. Amer.,89, No. 6, 2745–2752 (1991).Google Scholar
  11. 11.
    R. D. Kriz and W. W. Stinchomb, “Elastic moduli of transversely isotropic graphite fibers and their composites,” Exp. Mech.,19, No. 1, 41–49 (1979).Google Scholar
  12. 12.
    S. I. Rokhlin and W. Wang, “Critical angle measurement of elastic constants in composite material,” J. Acoust. Soc. Amer.,86, No. 5, 1876–1882 (1989).Google Scholar
  13. 13.
    Y. C. Chu, A. D. Degtyar, and S. I. Rokhlin, “On determination of orthotropic material moduli from ultrasonic velocity data in nonsymmetry planes,” J. Acoust. Soc. Amer.,95, No. 6, 3191–3203 (1993).Google Scholar
  14. 14.
    Y. C. Chu and S. I. Rokhlin, “Comparative analysis of through-transmission ultrasonic bulk wave methods for phase velocity measurements in anisotropic materials,” J. Acoust. Soc. Amer.,95, No. 6, 3204–3212 (1994).Google Scholar
  15. 15.
    A. D. Degtyar and S. I. Rokhlin, “Absolute stress determination in orthotropic materials from angular dependences of ultrasonic velocities,” J. Appl. Phys.,78, No. 3, 1547–1556 (1995).Google Scholar
  16. 16.
    A. J. Every and W. Sachse, “Determination of the elastic constant anisotropic solids from acoustic-wave group-velocity measurements,” Phys. Rev. B.,42, 8196–8205 (1992).Google Scholar
  17. 17.
    V. E. Gusev and A. A. Karabutov, Laser Optical Acoustics [in Russian], Nauka, Moscow (1991).Google Scholar
  18. 18.
    A. A. Karabutov, M. P. Matrosov, N. B. Podymova, and V. A. Pyzh, “Impulse acoustic spectroscopy with a laser source of sound,” Akust. Zh.,37, No. 2, 311–323 (1991).Google Scholar
  19. 19.
    A. A. Karabutov, M. P. Matrosov, and N. B. Podymova, “Thermooptical generator of wide-band impulses of shear waves,” Akust. Zh.,39, No. 2, 373–375 (1993).Google Scholar
  20. 20.
    A. A. Karabutov, K. V. Kokonets, and N. B. Podymova, “Wide-band acoustic spectroscopy of shear waves on the basis of thermooptical source of ultrasound,” Akust. Zh.,41, No. 1, 95–100 (1995).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. A. Karabutov
  • I. M. Kershtein
  • I. M. Pelivanov
  • N. B. Podymova

There are no affiliations available

Personalised recommendations