Skip to main content
Log in

A survey of singular curves in sub-Riemannian geometry

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

Sub-Riemannian geometry is the geometry of a distribution ofk-planes on an-dimensional manifold with a smoothly varying inner product on thek-planes. Singular curves are singularities of the space of paths tangent to the distribution and joining two fixed points. This survey is devoted to the singular curves, which can be length minimizing geodesics, independent of the choice of inner product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Agrachev and A.V. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity.Preprint, 1993.

  2. W. Ambrose and I.M. Singer, A theorem on holonomy.Trans. Am. Math. Soc. 75 (1953), 428–453.

    Google Scholar 

  3. A. Bejancu, Geometry of CR-submanifolds.D. Reidel, Dordrecht, Holland, 1986.

    Google Scholar 

  4. J.-M. Bismut, Large deviations and the Malliavin calculus.Birkhauser, 1984.

  5. G.A. Bliss, Lectures on calculus of variations.Univ. of Chicago Press, 1946.

  6. R.W. Brockett, Nonlinear control theory and differential geometry.Proc. of the Int. Congress of Mathematicians, Warszawa, 1983.

  7. R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, and P.A. Griffiths, Exterior differential systems, Vol. 18.MSRI Publications, Springer-Verlag, 1991.

  8. R. Bryant and L. Hsu, Rigidity of integral curves of rank two distributions.Invent. Math. 114 (1993), 435–461.

    Google Scholar 

  9. E. Cartan, Lès systemes de Pfaff a cinque variables et lès equations aux derivees partielles du second ordre.Ann. Sci. Ècole Normale 27 (1910), No. 3, 109–192.

    Google Scholar 

  10. L. Chaves A finiteness theorem for fat bundles.Topology. (1994), Aug., 493–499.

    Google Scholar 

  11. W.L. Chow, Uber Systeme van Linearen partiellen Differentialgleichungen erster Ordnung.Math. Ann. 117 (1939), 98–105.

    Google Scholar 

  12. M. Christ, Analytic hypoellipticity breaks down for weakly pseudoconvex Reinhardt domains.Preprint, UCLA, 1991.

  13. K.J. Falconer, The geometry of fractal sets.Cambridge Univ. Press, 1985.

  14. Zhong Ge, Horizontal path space and Carnot-Caratheodory metrics.Pac. J. Math. 161 (1993), 255–286.

    Google Scholar 

  15. —, Caustics in optimal control: an example when the symmetry is broken.Lect. Appl. Math. 29 (1993), 203–212.

    Google Scholar 

  16. Zhong Ge, On the cut points and conjugate points ina constrained variational problem.Fields Inst. Commun. 1 (1993).

  17. —, On a constrained variational problem and the space of horizontal paths.Pac. J. Math. 149 (1991), 61–94.

    Google Scholar 

  18. V. Gershkovich, Engel structures on four-dimensional manifolds.Preprint, Univ. of Melbourne, 1993.

  19. M. Gromov, J. Lafontaine, and P. Pansu, Structures metriques pour les varietes Riemanniennes.Paris, Cedic, 1981.

    Google Scholar 

  20. M. Gromov, Carnot-Caratheodory spaces seen from within.IHES preprint M/94/6, 1994, 221 pp.

  21. A. Guichardet, On rotation and vibration motions of molecules.Ann. Inst. H. Poincare, Phys. Theor. 40 (1984), No. 3, 329–342.

    Google Scholar 

  22. V. Guillemin and A. Uribe, The trace formula for vector bundles.Bull. Am. Math. Soc. 14 (1986), No. 2, 222–224.

    Google Scholar 

  23. V. Guillemin, Some spectral properties of periodic potentials. inLect. Notes Math. 1256 (1987),Springer, 192–214.

  24. —, The Laplace operator on thenth tensor power of a line bundle: eigenvalues which are uniformly bounded inn.Asympt. Anal. 1 (1988), 105–113.

    Google Scholar 

  25. U. Hamenstädt, Some regularity theorems for Carnot-Caratheodory metricsJ. Differ. Geom. 32 (1990), 819–850.

    Google Scholar 

  26. —, Zur Theorie von Carnot-Caratheodory Metriken und ihren Anwendungen.Bonner Math. Schriften, Univ. Bonn, (1987), No. 180, 1–64.

    Google Scholar 

  27. R. Hermannn, Some differential geometric aspects of the Lagrange variational problem.Indiana Math. J. (1962), 634–673.

  28. L. Hsu, Calculus of variations via the Griffiths formalism.J. Differ. Geom. 36 (1991), No. 3, 551–591.

    Google Scholar 

  29. Th. Kaluza, Zum unitatsproblem der physik,Berlin Berichte (1921), 966 pp.

  30. R. Kerner, Generalization of the Kaluza-Klein theory for an arbitrary non-Abelian group.Ann. Inst. Henri Poincare 9 (1968), 143–152.

    Google Scholar 

  31. I. Kupka, Abnormal extremals.Preprint, 1992.

  32. W-S. Liu and H.J. Sussmann, Shortest paths for sub-Riemannian metrics on rank two distributions.Preprint, Trans. Am. Math. Soc., 1994 (to appear).

  33. J. Martinet, Sur les singularites des formes differentialles.Ana. Insp. (Grenoble) 20 (1970), No. 1, 95–198.

    Google Scholar 

  34. J. Mitchell, On Carnot-Caratheodory metrics.J. Differ. Geom. 21 (1985), 34–45.

    Google Scholar 

  35. R. Montgomery, Abnormal minimizers.SIAM J. Control Optim. (1994) (to appear).

  36. —, The isoholonomic problem and some applications.Commun. Math. Phys.,128 (1990), 565–592.

    Google Scholar 

  37. R. Montgomery, Singular extremals on Lie groups,MCSS (1995) (to appear).

  38. —, Gauge theory and control theory. In Nonholonomic motion planning. J. Canny and Z. Li, eds.,Kluwer Acad., Norwell, MA, USA, 1993, 343–378.

    Google Scholar 

  39. —, Gauge theory and the falling cat. In Dynamics and control of mechanical systems. M. Enos, ed., Fields Inst. Communications Series, Vol.1,AMS Pub., Providence, RI, 1993, 193–218.

    Google Scholar 

  40. —, Generic distributions and finite dimensional Lie algebras.J. Differ. Equ. 103 (1993), 387–393.

    Google Scholar 

  41. R. Montgomery, Hearing the zero locus of a magnetic field.Preprint, 1994.

  42. M. Morse and S. Myers, The problems of Lagrange and Mayer with variable endpoints.Proc. Am. Acad. 66 (1931), No. 6, 236–253.

    Google Scholar 

  43. R. Murray, Nilpotent bases for a class of non-integrable distributions with applications to trajectory generation for nonholonomic systems. CDS Technical Memorandum, No. CIT-CDS 92-002,Calif. Inst. of Tech., 1993.

  44. A. Nagel, E. M. Stein, and S. Wainger, Balls and metrics defined by vector fields.Acta Math. 155 (1985), 103–147.

    Google Scholar 

  45. P. Pansu, Metriques de Carnot-Caratheodory et quasiisometries des espaces symetriques de rang un.Ann. Math. 129 (1989), 1–60.

    Google Scholar 

  46. L. S. Pontrjagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes.Wiley Interscience, 1962.

  47. C.B. Rayner, The exponential map for the Lagrange problem on differentiable manifolds.Philos. Trans. R. Soc. London, Ser. A, Math. and Phys. Sci. 262 (1967), No. 1127, 299–344.

    Google Scholar 

  48. L. P. Rothschild and E.M. Stein, Hypoelliptic differential operators and nilpotent groups.Acta Math. 137 (1976), 247–320.

    Google Scholar 

  49. A. Shapere and F. Wilczek, Self-propulsion at low Reynolds number.Phys. Rev. Lett. 58 (1987), 2051–2054.

    Google Scholar 

  50. —, Geometric phases in physics.World Scientific, Singapore, 1989.

    Google Scholar 

  51. E.D. Sontag, Mathematical control theory.Springer-Verlag, New York, 1990.

    Google Scholar 

  52. S. Sternberg, On minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field.Proc. Natl. Acad. Sci. USA 74 (1977), 5253–5254.

    Google Scholar 

  53. R. Strichartz, Sub-Riemannian geometry.J. Differ. Geom. 24 (1983), 221–263.

    Google Scholar 

  54. —, Corrections to “Sub-Riemanniand geometry”.J. Differ. Geom. 30 (1989), No. 2, 595–596.

    Google Scholar 

  55. A.M. Vershik and V. Ya Gerhskovich, An estimate of the functional dimension of the space of orbits of germs of generic distributions.Math. USSR, Zametki 44:45 (1988), 596–603.

    Google Scholar 

  56. —, Nonholonomic dynamical systems, geometry of distributions and variational problems. In Dynamical Systems VII. Ed. V.I. Arnol'd and S.P. Novikov, Vol. 16 of the Encyclopaedia of Mathematical Sciences series,Springer-Verlag, NY, 1994. (Russian original 1987.)

    Google Scholar 

  57. A. Weinstein, Fat bundles and symplectic manifolds.Adv. Math. 37 (1980), 239–250.

    Google Scholar 

  58. —, A universal phase space for a particle in a Yang-Mills field.Lett. Math. Phys. 2 (1978), 417–420.

    Google Scholar 

  59. S.K. Wong, Field and particle equations for the classical Yang-Mills field and particles with isotopic spin.Nuovo Cimento 65a (1970), 689–693.

    Google Scholar 

  60. L.C. Young, Lectures on the calculus of variations and optimal control theory.Chelsea, 1980.

  61. M. Ya. Zhitomirskii, Typical singularities of differential 1-forms and Pfaffian equations. Transl. of Math. Monographs series, Vol. 113,A.M.S., Providence, RI, 1992.

    Google Scholar 

  62. —, Singularities and normal forms of odd-dimensional Pfaff equations. (Russian)Funkts. Anal. Ego Prilozhen. 23 (1989), No. 1, 70–71.

    Google Scholar 

  63. —, Normal forms of germs of 2-dimensional distributions in ℝ4. (Russian)Funkts. Anal. Ego Prilozhen. 24 (1990), No. 2, 81–82, English translation:Funct. Anal. Appl. 24, (1990).

    Google Scholar 

  64. J.W. Zwanziger, M. Koenig, and A. Pines, Berry's phase. InAnnual Review of Chemistry, 1990.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montgomery, R. A survey of singular curves in sub-Riemannian geometry. Journal of Dynamical and Control Systems 1, 49–90 (1995). https://doi.org/10.1007/BF02254656

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02254656

1991 Mathematics Subject Classification

Navigation