Skip to main content
Log in

Biological functions and metabolic fate of vitamin E revisited

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Information accumulated lately has confirmed the essentiality of vitamin E for humans and provided a better understanding of its biological function and metabolic fate. The discovery of α-tocopherol transfer protein, which preferentially binds to RRR-α-tocopherol, not only provides conclusive evidence of the essentiality of vitamin E for humans, but also sheds light on the superiority of RRR-α-tocopherol biologically over other isomers. The presence of tocopherol regeneration systems and multiple interdependent antioxidant systems is largely responsible for the lack of a widespread deficiency in humans and the difficulty to deplete vitamin E in the adult. The bulk of excess tocopherols consumed is excreted to feces unchanged or to urine with the side chain shortened but the chroman ring intact. The ability of dietary vitamin E to mediate mitochondrial superoxide generation affords a possible mode of action of vitamin E at the tissue levels. By decreasing the generation and/or the levels of reactive oxygen/nitrogen species, dietary vitamin E not only protects against oxidative damage, but also modulates the expression and/or activation of redox-sensitive biological response modifiers that regulate important cellular events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arita M, Sato, Y, Miyata A, Tababe T, Takahashi E, Kayden HJ, Arai H, Inoue K. Human α-tocopherol transfer protein: Gene structure and chromosomal localization. Biochem J 305:437–443;1995.

    Google Scholar 

  2. Azzi A, Ricciarelli R, Zingg JM. Non-antioxidant molecular functions of alpha-tocopherol (vitamin E). FEBS Lett 519:8–10;2002.

    Google Scholar 

  3. Bieri JG, Farrell PM. Vitamin E. Vitam Horm 34:31–75;1976.

    Google Scholar 

  4. Burton GW, Traber MG. Vitamin E: Antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr 10:357–380;1990.

    Google Scholar 

  5. Byun MS, Jeon KI, Choi JW, Shim JY, Jue DM. Dual effect of oxidative stress on NF-kappakB activation in HeLa cells. Exp Mol Med 34:332–339;2002.

    Google Scholar 

  6. Chan AC, Tran K, Raynor T, Ganz PR, Chow CK. Regeneration of vitamin E in human platelets. J Biol Chem 266:17290–17295;1991.

    Google Scholar 

  7. Chiarugi P. Reactive oxygen species as mediators of cell adhesion. Ital J Biochem 52:28–32;2003.

    Google Scholar 

  8. Chiku S, Hamamura K, Nakamura T. Novel urinary metabolite of δ-tocopherol in rats. J Lipid Res 25:40–48;1984.

    Google Scholar 

  9. Chou AC, Broun GO, Fitch CD Jr. Abnormalities of iron metabolism and erythropoieses in vitamin E-deficient rabbits. Blood 52:187–195;1978.

    Google Scholar 

  10. Chow CK. Increased activity of pyruvate kinase in plasma of vitamin E-deficient rats. J Nutr 105:1221–1224;1975.

    Google Scholar 

  11. Chow CK. Biochemical responses in the lungs of ozone-tolerant rats. Nature 260:721–722;1976.

    Google Scholar 

  12. Chow CK. Nutritional influence in cellular antioxidant defense systems. Am J Clin Nutr 32:1066–1081;1979.

    Google Scholar 

  13. Chow CK. Vitamin E and blood. World Rev Nutr Diet 45:133–166;1985.

    Google Scholar 

  14. Chow CK. Vitamin E and oxidative stress. Free Radic Biol Med 11:215–232;1991.

    Google Scholar 

  15. Chow CK. Vitamin E. In: Rucker RB, Suttie JW, McCormick DB, Machlin LJ, eds. Handbook of Vitamins, ed 3. New York, Marcel Dekker, 165–197;2001.

    Google Scholar 

  16. Chow CK. Vitamin E regulation of mitochondrial superoxide. Biol Signals Recept 10:112–124;2001.

    Google Scholar 

  17. Chow CK, Tappel AL. An enzymatic protective mechanism against lipid peroxidation damage to lungs of ozone-exposed rats. Lipids 7:518–524;1972.

    Google Scholar 

  18. Chow CK, Reddy K, Tappel AL. Effect of dietary vitamin E on the activities of glutathione peroxidase system in rat tissue. J Nutr 103:618–624;1973.

    Google Scholar 

  19. Chow CK, Draper HH, Csallany AS, Chiu M. The metabolism of14C-α-tocopheryl quinone and14C-α-tocopheryl hydroquinone. Lipids 2:390–396;1967.

    Google Scholar 

  20. Chow CK, Ibrahim W, Wei Z, Chan AC. Vitamin E regulates mitochondrial hydrogen peroxide generation. Free Radic Biol Med 27:580–587;1999.

    Google Scholar 

  21. Clarke R, Armitage J. Antioxidant vitamins and risk of cardiovascular disease: Review of large-scale randomised trials. Cardiovasc Drugs Ther 16:411–415;2002.

    Google Scholar 

  22. Diliberto E Jr, Dean G, Carter C, Allen PL. Tissue, subcellular, and submitochondrial distributions of semidehydroascorbate reductase: Possible role of semidehydroascorbate reductase in cofactor regeneration. J Neurochem 39:563–568;1982.

    Google Scholar 

  23. Draper HH, Csallany A. Metabolism and function of vitamin E. Fed Proc 28:1690–1695;1969.

    Google Scholar 

  24. Evans HM, Bishop KS. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56:650–651;1922.

    Google Scholar 

  25. Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol 5:247–254;2003.

    Google Scholar 

  26. Fraga CG, Oteiza PI. Iron toxicity and antioxidant nutrients. Toxicology 180:23–32;2002.

    Google Scholar 

  27. Freeman BA, Crapo JD. Biology of disease: Free radicals and tissue injury. Lab Invest 47:412–426;1982.

    Google Scholar 

  28. Gabsi S, Gouider-Khouja N, Belal S, Fki M, Kefi M, Turki I, Ben-Hamida M, Kayden H, Mebazaa R, Hentati F. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 8:477–481;2001.

    Google Scholar 

  29. Gutteridge JM. Iron promoters of the Fenton reaction and lipid peroxidation can be released from hemoglobin by peroxide. FEBS Lett 201:291–295;1986.

    Google Scholar 

  30. Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 14:879–897;2002.

    Google Scholar 

  31. Halliwell B. Oxidants and human disease: Some new concepts. FASEB J 1:358–364;1987.

    Google Scholar 

  32. Harmon EM, Witting LA, Horwitt MK. Relative rates of depletion of alpha-tocopherol and linoleic acid after feeding polyunsaturated fats. Am J Clin Nutr 18:243–248;1966.

    Google Scholar 

  33. Hayashi T, Kanetoshi A, Nakamura M, Tamura M, Shirahama H. Reduction of alpha-to-copherolquinone to alpha-tocopherolhydroquinone in rat hepatocytes. Biochem Pharmacol 44:489–493;1992.

    Google Scholar 

  34. Hentati A, Deng HX, Hung WY, Nayer M, Ahmed MG, He X, Tim R, Stumpf DA, Siddique T. Human alpha-tocopherol transfer protein: Gene structure and mutations in familial vitamin E deficiency. Ann Neurol 39:295–300;1996.

    Google Scholar 

  35. Ibrahim W, Chow CK. Unpublished results.

  36. Ibrahim WH, Bhagavan HN, Chopra RK, Chow CK. Dietary coenzyme Q10 and vitamin E alter the status of these compounds in rat tissues and mitochondria. J Nutr 130:2343–2348;2000.

    Google Scholar 

  37. Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34:145–169;2003.

    Google Scholar 

  38. Jialal I, Traber M, Devaraj S. Is there a vitamin E paradox? Curr Opin Lipidol 12:49–53;2001.

    Google Scholar 

  39. Kakhlon O, Ioav Cabantchik Z. The labile iron pool: Characterization, measurement, and participation in cellular processes. Free Radic Biol Med 33:1037–1046;2002.

    Google Scholar 

  40. Kamal-Eldin A, Appelqvist LA. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701;1996.

    Google Scholar 

  41. Kayden HJ, Traber MG. Absorption, lipoprotein transport, and regulation of plasma concentrations of vitamin E in humans. J Lipid Res 34:343–358;1993.

    Google Scholar 

  42. Keyer K, Imlay JA. Superoxide accelerates DNA damage by elevating free iron levels. Proc Natl Acad Sci USA 93:13635–13640;1996.

    Google Scholar 

  43. Kline K, Lawson KA, Yu W, Sanders BG. Vitamin E and breast cancer prevention: Current status and future potential. J Mammary Gland Biol Neoplasia 8:91–102;2003.

    Google Scholar 

  44. Kohlschütter A, Hübner C, Jansen W, Lindner SG. A treatable familial neuromyopathy with vitamin E deficiency, normal absorption, and evidence of increased consumption of vitamin E. J Inherit Metab Dis 11:149–152;1988.

    Google Scholar 

  45. Lass A, Sohal RS. Effect of coenzyme Q(10) and alpha-tocopherol content of mitochondria on the production of superoxide anion radicals. FASEB J 14:87–94;2000.

    Google Scholar 

  46. Lee PJ, Choi AM. Pathways of cell signaling in hyperoxia. Free Radic Biol Med 35:341–350;2003.

    Google Scholar 

  47. Manson JE, Bassuk SS, Stampfer MJ. Does vitamin E supplementation prevent cardiovascular events? J Womens Health (Larchmt) 12:123–136;2003.

    Google Scholar 

  48. Meagher EA. Treatment of atherosclerosis in the new millennium: Is there a role for vitamin E? Prev Cardiol 6:85–90;2003.

    Google Scholar 

  49. Minotti G. Sources and role of iron in lipid peroxidation. Chem Res Toxicol 6:134–146;1993.

    Google Scholar 

  50. Minotti G, Aust SD. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem 262:1098–1104;1987.

    Google Scholar 

  51. Niki E, Tsuchiya J, Tanimura R, Kamiya Y. Regeneration of vitamin E from alpha-chromanoxy radical by glutathione and vitamin C. Chem Lett 6:789–792;1982.

    Google Scholar 

  52. O'Donnell VB. Free radicals and lipid signaling in endothelial cells. Antioxid Redox Signal 5:195–200;2003.

    Google Scholar 

  53. Quahchi K, Arita M, Kayden HJ, Hentati F, Hamida MB, Sokol R, Arai H, Inoue K, Mandel IL, Koenig M. Ataxia with isolated vitamin E deficiency is caused by mutation in the α-tocopherol transfer protein. Nat Genet 9:141–145;1995.

    Google Scholar 

  54. Packer JE, Slater TF, Wilson RL. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278:737–738;1979.

    Google Scholar 

  55. Pfeilschifter J, Eberhardt W, Huwiler A. Nitric oxide and mechanisms of redox signaling. J Am Soc Nephrol 14 (8 suppl 3):S237-S240;2003.

    Google Scholar 

  56. Poli G, Albano E, Biasi F, Cecchini G, Carini R, Bellomo G, Dianzani MU. Lipid peroxidation stimulated by carbon tetrachloride or iron and hepatocyte death: Protective effect of vitamin E. Eur J Biochem 59:449–455;1975.

    Google Scholar 

  57. Rimbach G, Minihane AM, Majewicz J, Fischer A, Pallauf J, Virgli F, Weinberg PD. Regulation of cell signalling by vitamin E. Proc Nutr Soc 61:415–425;2002.

    Google Scholar 

  58. Schultz M, Leist M, Petrzika M, Gassmann B, Brigelius-Flohe R. Novel urinary metabolite of α-tocopherol, 2,5,7,8-tetramethyl-2(2′-carboxyethyl)-6-hydroxychroman, as an indicator of an adequate vitamin E supply? Am J Clin Nutr 62(6 Suppl):1527S-1534S;1995.

    Google Scholar 

  59. Scott ML. Studies on vitamin E and related factors in nutrition and metabolism. In: DeLuca HF, Suttie JW, eds. The Fat-Soluble Vitamins. Madison, University of Wisconsin Press, 355–368; 1969.

    Google Scholar 

  60. Simon EJ, Eisengart A, Sundheim L, Milhorat AT. The metabolism of vitamin E. II. Purification and characterization of urinary metabolites of α-tocopherol. J Biol Chem 221:807–817;1956.

    Google Scholar 

  61. Smith P, Tappel AL, Chow CK. Glutathione peroxidase activity as a function of dietary selenomethionine. Nature 247:392–393;1974.

    Google Scholar 

  62. Sokol RJ. Vitamin E deficiency and neurological disease. Annu Rev Nutr 8:351–373;1988.

    Google Scholar 

  63. Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 25:392–403;1998.

    Google Scholar 

  64. Sung L, Greenberg ML, Koren G, Tomlinson GA, Tong A, Malkin D, Feldman BM. Vitamin E: E: The evidence for multiple roles in cancer. Nutr Cancer 46:1–14;2003.

    Google Scholar 

  65. Tappel AL. Will antioxidant nutrients slow aging process? Geriatrics 23:97–105;1968.

    Google Scholar 

  66. Tasinato A, Boscoboinik D, Bartoli GM, Maroni P, Azzi A.d-Alpha-tocopherol inhibition of vascular smooth muscle cell proliferation occurs at physiological concentrations, correlates with protein kinase C inhibition, and is independent of its antioxidant properties. Proc Natl Acad Sci USA 92:12190–12194;1995.

    Google Scholar 

  67. Thomas PK, Cooper JM, King RH, Workman JM, Schapira AH, Sampson MA, Muller DP: Myopathy in vitamin E deficient rats: Muscle fiber necrosis associated with disturbances of mitochondrial function. J Anat 183:451–461;1993.

    Google Scholar 

  68. Touyz RM. Recent advances in intracellular signalling in hypertension. Curr Opin Nephrol Hypertens 12:165–174;2003.

    Google Scholar 

  69. Traber MG. Determinations of plasma vitamin E concentrations. Free Radic Biol Med 16:229–239;1994.

    Google Scholar 

  70. Traber MG, Kayden HJ. Preferential incorporation of α-tocopherol vs. γ-tocopherol in human lipoproteins. Am J Clin Nutr 49:517–526;1989.

    Google Scholar 

  71. Traber MG, Packer L. Vitamin E: Beyond antioxidant function. Am J Clin Nutr 62(6 Suppl):1501S-1509S;1995.

    Google Scholar 

  72. Traber MG, Burton GW, Ingold KU, Kayden HJ. RRR-and SRR-α-tocopherols are secreted without discrimination in human chylomicrons, but RRR-α-tocopherol is preferentially secreted in very low density lipoproteins. J Lipid Res 31:675–685;1990.

    Google Scholar 

  73. Traber MG, Sokol RJ, Kohlschütter A, Kayden HJ. Impaired discrimination between stereoisomers of α-tocopherol in patients with familial isolated vitamin E deficiency. J Lipid Res 34:201–210;1993.

    Google Scholar 

  74. Upston JM, Kritharides L, Stocker R. The role of vitamin E in atherosclerosis. Prog Lipid Res 42:405–422;2003.

    Google Scholar 

  75. Ursini F, Maiorino M, Gregolin C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta 839:62–70;1985.

    Google Scholar 

  76. Wechter WJ, Kantoci D, Murry ED Jr, D'Amico DC, Jung ME, Wang WH. A new endogenous natriuretic factor: LLU-α. Proc Natl Acad Sci USA 93:6002–6007;1996.

    Google Scholar 

  77. Weiser H, Vecchi M. Stereoisomers of α-to-copheryl acetate. II. Biopotencies of all eight stereoisomers, individually or in mixtures, as determined by rat resorption-gestation tests. Int J Vitam Nutr Res 52:351–370;1982.

    Google Scholar 

  78. Weiser H, Vecchi M, Schlachter M. Stereoisomers of alpha-tocopheryl acetate. IV. USP units and alpha-tocopherol equivalents of allrac-, 2-ambo- and RRR-alpha-tocopherol evaluated by simultaneous determination of resorption-gestation, myopathy and liver storage capacity in rats. Int J Vitam Nutr Res 56:45–56;1986.

    Google Scholar 

  79. Welch KD, Davis TZ, Van Eden ME, Aust SD. Deleterious iron-mediated oxidation of biomolecules. Free Radic Biol Med 32:577–583;2002.

    Google Scholar 

  80. Yu BP. Cellular defense against damage from reactive oxygen species. Physiol Rev 74:139–162;1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang Chow, C. Biological functions and metabolic fate of vitamin E revisited. J Biomed Sci 11, 295–302 (2004). https://doi.org/10.1007/BF02254433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02254433

Key Words

Navigation