Journal of Biomedical Science

, Volume 11, Issue 6, pp 789–798 | Cite as

Insulin decreases the secretion of apoB-100 from hepatic HepG2 cells but does not decrease the secretion of apoB-48 from intestinal CaCo-2 cells

  • Emma M. Allister
  • Sebely Pal
  • Andrew M. Thomson
  • Erik Helmerhorst
  • John C. L. Mamo
Original Paper


We compared the acute effect of insulin on the human colonic intestinal epithelial cell line CaCo-2 and the transformed human hepatic cell line HepG2. Over 24 h, 100 nM and 10 µM insulin significantly inhibited the secretion of apolipoprotein (apo) B-100 from HepG2 cells to 63 and 49% of control, respectively. Insulin had no effect on the secretion of apoB-48 from CaCo-2 cells. There was no effect of insulin on the cholesterol ester or free cholesterol concentrations in HepG2 or CaCo-2 cells. HepG2 and CaCo-2 cells bound insulin with high affinity, leading to similar stimulation of insulin receptor protein tyrosine kinase activation. Protein kinase C or mitogen-activated protein kinase activity in the presence or absence of insulin was not correlated with apoB-48 production in CaCo-2 cells. Therefore, insulin acutely decreases the secretion of apoB-100 in hepatic HepG2 cells, but does not acutely modulate the production or secretion of apoB-48 from CaCo-2 intestinal cells.

Key Words

Insulin Apolipoprotein B-48 Apolipoprotein B-100 Chylomicron Very low-density lipoprotein CaCo-2 HepG2 Cholesterol Kinase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Au WS, Kung HF, Lin MC. Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells: Roles of MAPKerk and MAPKp38. Diabetes 52:1073–1080;2003.PubMedGoogle Scholar
  2. 2.
    Bjornsson OG, Bourgeois CS, Gibbons GF. Varying very low-density lipoprotein secretion of rat hepatocytes by altering cellular levels of calcium and the activity of protein kinase C. Eur J Clin Invest 28:720–729;1998.CrossRefPubMedGoogle Scholar
  3. 3.
    Black DD, Ellinas H. Apolipoprotein synthesis in newborn piglet intestinal explants. Pediatr Res 32:553–558;1992.PubMedGoogle Scholar
  4. 4.
    Borradaile NM, de Dreu LE, Huff MW. Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Diabetes 52:2554–2561;2003.PubMedGoogle Scholar
  5. 5.
    Cavallo D, McLeod RS, Rudy D, Aiton A, Yao Z, Adeli K. Intracellular translocation and stability of apolipoprotein B are inversely proportional to the length of the nascent polypeptide. J Biol Chem 273:33397–33405;1998.CrossRefPubMedGoogle Scholar
  6. 6.
    Chen SH, Habib G, Yang CY, Gu ZW, Lee BR, Weng SA, et al. Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 238:363–366;1987.PubMedGoogle Scholar
  7. 7.
    Cianflone KM, Yasruel Z, Rodriguez MA, Vas D, Sniderman AD. Regulation of apoB secretion from HepG2 cells: Evidence for a critical role for cholesteryl ester synthesis in the response to a fatty acid challenge. J Lipid Res 31:2045–2055;1990.PubMedGoogle Scholar
  8. 8.
    Dashti N, Smith EA, Alaupovic P. Increased production of apolipoprotein B and its lipoproteins by oleic acid in Caco-2 cells. J Lipid Res 31:113–123;1990.PubMedGoogle Scholar
  9. 9.
    Dashti N, Wolfbauer G. Secretion of lipids, apolipoproteins, and lipoproteins by human hepatoma cell line, HepG2: Effects of oleic acid and insulin. J Lipid Res 28:423–436;1987.PubMedGoogle Scholar
  10. 10.
    Davis RA, Clinton GM, Borchardt RA, Malone-McNeal M, Tan T, Lattier GR. Intrahepatic assembly of very low density lipoproteins. Phosphorylation of small molecular weight apolipoprotein B. J Biol Chem 259:3383–3386;1984.PubMedGoogle Scholar
  11. 11.
    DeFronzo RA: Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: A balanced overview. Diabetologia 35:389–397;1992.CrossRefPubMedGoogle Scholar
  12. 12.
    Folch J, Lees M, Sloane Stanley GM. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509;1957.PubMedGoogle Scholar
  13. 13.
    Glickman RM, Rogers M, Glickman JN. Apolipoprotein B synthesis by human liver and intestine in vitro. Proc Natl Acad Sci USA 83:5296–5300;1986.PubMedGoogle Scholar
  14. 14.
    Grundy SM, Mok HY, Zech L, Steinberg D, Berman M. Transport of very low density lipoprotein triglycerides in varying degrees of obesity and hypertriglyceridemia. J Clin Invest 63:1274–1283;1979.PubMedGoogle Scholar
  15. 15.
    Gutniak M, Grill V, Efendic S. Effect of composition of mixed meals — low- versus high-carbohydrate content — on insulin, glucagon, and somatostatin release in healthy humans and in patients with NIDDM. Diabetes Care 9:244–249;1986.PubMedGoogle Scholar
  16. 16.
    Haidari M, Leung N, Mahbub F, Uffelman KD, Kohen-Avramoglu R, Lewis GF, et al. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J Biol Chem 277:31646–31655;2002.CrossRefPubMedGoogle Scholar
  17. 17.
    Hussain MM, Iqbal J, Anwar K, Rava P, Dai K. Microsomal triglyceride transfer protein: A multifunctional protein. Front Biosci 8:s500-s506;2003.PubMedGoogle Scholar
  18. 18.
    Jackson TK, Salhanick AI, Elovson J, Deichman ML, Amatruda JM. Insulin regulates apolipoprotein B turnover and phosphorylation in rat hepatocytes. J Clin Invest 86:1746–1751;1990.PubMedGoogle Scholar
  19. 19.
    James AP, Watts GF, Barrett PH, Smith D, Pal S, Chan DC, Mamo JC. Effect of weight loss on postprandial lipemia and low-density lipoprotein receptor binding in overweight men. Metabolism 52:136–141;2003.CrossRefPubMedGoogle Scholar
  20. 20.
    Jiao S, Moberly JB, Cole TG, Schonfeld G. Decreased activity of acyl-CoA:cholesterol acyltransferase by insulin in human intestinal cell line Caco-2. Diabetes 38:604–609;1989.PubMedGoogle Scholar
  21. 21.
    Karpe F, Steiner G, Uffelman K, Olivecrona T, Hamsten A. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis 106:83–97;1994.CrossRefPubMedGoogle Scholar
  22. 22.
    Kotzka J, Muller-Wieland D, Roth G, Kremer L, Munck M, Schurmann S, et al. Sterol regulatory element binding proteins (SREBP)-1a and SREBP-2 are linked to the MAP-kinase cascade. J Lipid Res 41:99–108;2000.PubMedGoogle Scholar
  23. 23.
    Levy E, Sinnett D, Thibault L, Nguyen TD, Delvin E, Menard D. Insulin modulation of newly synthesized apolipoproteins B-100 and B-48 in human fetal intestine: Gene expression and mRNA editing are not involved. FEBS Lett 393:253–258;1996.CrossRefPubMedGoogle Scholar
  24. 24.
    Lin MC, Gordon D, Wetterau JR. Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells: Insulin negatively regulates MTP gene expression. J Lipid Res 36:1073–1081;1995.PubMedGoogle Scholar
  25. 25.
    Mamo JC, Watts GF, Barrett PH, Smith D, James AP, Pal S. Postprandial dyslipidemia in men with visceral obesity: An effect of reduced LDL receptor expression? Am J Physiol Endocrinol Metab 2001;281:E626-E632.PubMedGoogle Scholar
  26. 26.
    Mamo JC, Yu KC, Elsegood CL, Smith D, Vine D, Gennat HC, et al. Is atherosclerosis exclusively a postprandial phenomenon? Clin Exp Pharmacol Physiol 24:288–293;1997.PubMedGoogle Scholar
  27. 27.
    Martins IJ, Sainsbury AJ, Mamo JC, Redgrave TG. Lipid and apolipoprotein B48 transport in mesenteric lymph and the effect of hyperphagia on the clearance of chylomicron-like emulsions in insulin-deficient rats. Diabetologia 37:238–246;1994.PubMedGoogle Scholar
  28. 28.
    Mathur SN, Born E, Bishop WP, Field FJ. Effect of okadaic acid on apo B and apo A-I secretion by CaCo-2 cells. Biochim Biophys Acta 1168:130–143;1993.PubMedGoogle Scholar
  29. 29.
    McPherson GA. Kinetic, Ebda, Ligand, Lowry: A Collection of Radioligand Binding Analysis Programs. Cambridge, Biosoft, 1985.Google Scholar
  30. 30.
    Meyer E, Westerveld HT, de Ruyter-Meijstek FC, van Greevenbroek MM, Rienks R, van Rijn HJ, et al. Abnormal postprandial apolipoprotein B-48 and triglyceride responses in normolipidemic women with greater than 70% stenotic coronary artery disease: A case-control study. Atherosclerosis 124:221–235;1996.CrossRefPubMedGoogle Scholar
  31. 31.
    Munson PJ, Rodbard D. Ligand: A versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107:220–239;1980.CrossRefPubMedGoogle Scholar
  32. 32.
    Pal S, Allister E, Thomson A, Mamo JC. Cholesterol esters regulate apoB(48) secretion in CaCo(2) cells. Atherosclerosis 161:55–63;2002.CrossRefPubMedGoogle Scholar
  33. 33.
    Pal S, Ho N, Santos C, Dubois P, Mamo JC, Croft K, Allister E. Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells. J Nutr 133:700–706;2003.PubMedGoogle Scholar
  34. 34.
    Pal S, Thomson AM, Bottema CD, Roach PD. Polyunsaturated fatty acids downregulate the low density lipoprotein receptor of human HepG2 cells. J Nutr Biochem 13:55–63;2002.CrossRefPubMedGoogle Scholar
  35. 35.
    Phung TL, Roncone A, Jensen KL, Sparks CE, Sparks JD. Phosphoinositide 3-kinase activity is necessary for insulin-dependent inhibition of apolipoprotein B secretion by rat hepatocytes and localizes to the endoplasmic reticulum. J Biol Chem 272:30693–30702;1997.CrossRefPubMedGoogle Scholar
  36. 36.
    Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607;1988.PubMedGoogle Scholar
  37. 37.
    Roth G, Kotzka J, Kremer L, Lehr S, Lohaus C, Meyer HE, et al. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro. J Biol Chem 275:33302–33307;2000.CrossRefPubMedGoogle Scholar
  38. 38.
    Simons LA, Dwyer T, Simons J, Bernstein L, Mock P, Poonia NS, et al. Chylomicrons and chylomicron remnants in coronary artery disease: A case-control study. Atherosclerosis 65:181–189;1987.CrossRefPubMedGoogle Scholar
  39. 39.
    Song BL, Qi W, Yang XY, Chang CC, Zhu JQ, Chang TY, et al. Organization of human ACAT-2 gene and its cell-type-specific promoter activity. Biochem Biophys Res Commun 282:580–588;2001.CrossRefPubMedGoogle Scholar
  40. 40.
    Sparks JD, Phung TL, Bolognino M, Sparks CE. Insulin-mediated inhibition of apolipoprotein B secretion requires an intracellular trafficking event and phosphatidylinositol 3-kinase activation: Studies with brefeldin A and wortmannin in primary cultures of rat hepatocytes. Biochem J 313:567–574;1996.PubMedGoogle Scholar
  41. 41.
    Sparks JD, Sparks CE. Insulin modulation of hepatic synthesis and secretion of apolipoprotein B by rat hepatocytes. J Biol Chem 265:8854–8862;1990.PubMedGoogle Scholar
  42. 42.
    Sparks JD, Sparks CE. Insulin regulation of triacylglycerol-rich lipoprotein synthesis and secretion. Biochim Biophys Acta 1215:9–32;1994.PubMedGoogle Scholar
  43. 43.
    Swift LL, Padley RJ, Getz GS. Differential labeling of rat hepatic Golgi and serum very low density lipoprotein apoprotein B variants. J Lipid Res 28:207–215;1987.PubMedGoogle Scholar
  44. 44.
    Thomson AM, Rogers JT, Leedman PJ. Thyrotropin-releasing hormone and epidermal growth factor regulate iron-regulatory protein binding in pituitary cells via protein kinase C-dependent and -independent signaling pathways. J Biol Chem 275:31609–31615;2000.CrossRefPubMedGoogle Scholar
  45. 45.
    Traber MG, Kayden HJ, Rindler MJ. Polarized secretion of newly synthesized lipoproteins by the Caco-2 human intestinal cell line. J Lipid Res 28:1350–1363;1987.PubMedGoogle Scholar
  46. 46.
    Wade DP, Knight BL, Soutar AK. Hormonal regulation of low-density lipoprotein (LDL) receptor activity in human hepatoma Hep G2 cells. Insulin increases LDL receptor activity and diminishes its suppression by exogenous LDL. Eur J Biochem 174:213–218;1988.CrossRefPubMedGoogle Scholar
  47. 47.
    Watts GF, Barrett PH, Marais AD, Dane-Stewart CA, Martins IJ, Dimmitt SB, et al. Chylomicron remnant metabolism in familial hypercholesterolaemia studied with a stable isotope breath test. Atherosclerosis 157:519–523;2001.CrossRefPubMedGoogle Scholar
  48. 48.
    Weintraub MS, Grosskopf I, Rassin T, Miller H, Charach G, Rotmensch HH, et al. Clearance of chylomicron remnants in normolipidaemic patients with coronary artery disease: Case control study over three years. BMJ 312:936–939;1996.PubMedGoogle Scholar
  49. 49.
    Young SG. Recent progress in understanding apolipoprotein B. Circulation 82:1574–1594;1990.PubMedGoogle Scholar
  50. 50.
    Zilversmit DB, Shea TM. Quantitation of apoB-48 and apoB-100 by gel scanning or radio-iodination. J Lipid Res 30:1639–1646;1989.PubMedGoogle Scholar

Copyright information

© National Science Council 2004

Authors and Affiliations

  • Emma M. Allister
    • 3
  • Sebely Pal
    • 3
  • Andrew M. Thomson
    • 1
  • Erik Helmerhorst
    • 2
  • John C. L. Mamo
    • 3
  1. 1.Laboratory for Cancer Medicine, University Department of MedicineUniversity of Western Australia, Royal Perth HospitalAustralia
  2. 2.Western Australian Biomedical Research Institute, School of Biomedical SciencesCurtin University of Technology, PerthAustralia
  3. 3.Department of Nutrition, Dietetics and Food SciencesCurtin University of TechnologyPerthAustralia

Personalised recommendations