Skip to main content
Log in

Influences of peripheral adrenocorticotropin 1–39 (ACTH) and human corticotropin releasing hormone (h-CRH) on human auditory evoked potentials (AEP)

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Hormones of the hypothalamus-pituitary-adrenal (HPA) axis have been considered to form part of an efferent humoral system modulating central nervous stimulus processing. The present experiments were designed to compare the effects of iv bolus administrations of placebo, porcine ACTH 1–39 (1.5 U) and h-CRH (25 µg) on auditory evoked potentials (AEPs) in healthy men. Also, cardiovascular parameters, cortisol and self-reported mood were assessed. ACTH significantly reduced the amplitude of the N1 component of the AEP; P1 and P2 remained unchanged. The selective reduction of N1 amplitude defies an interpretation of the changes in terms of a reduced stimulus-induced cortical arousal following ACTH; the ACTH-induced changes may rather indicate an influence on frontocortical functions of directing attention. The effect of ACTH on N1 cannot be attributed to its adrenocorticotropic action or to cardiovascular changes, but appears to represent an intrinsic extraadrenal influence of the hormone. The data do not provide evidence for effects of h-CRH on central nervous stimulus processing in humans, after peripheral administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Born J, Fehm-Wolfsdorf G, Schiebe M, Rockstroh B, Fehm HL, Voigt KH (1984) Dishabituating effects of an ACTH 4–9 analog in a vigilance task. Pharmacol Biochem Behav 21:513–519

    PubMed  Google Scholar 

  • Born J, Fehm-Wolfsdorf G, Schiebe M, Birbaumer N, Fehm HL, Voigt KH (1985) An ACTH 4–9 analog impairs selective attention in man. Life Sci 36:2117–2125

    Article  PubMed  Google Scholar 

  • Born J, Fehm HL, Voigt KH (1986) ACTH and attention in humans: a review. Neuropsychobiology 15:165–186

    PubMed  Google Scholar 

  • Born J, Bräuninger W, Fehm-Wolfsdorf G, Voigt KH, Pauschinger P, Fehm HL (1987) Dose-dependent influences on electrophysiological signs of attention in humans after neuropeptide ACTH 4–10. Exp Brain Res 67:85–92

    Article  PubMed  Google Scholar 

  • Born J, Hitzler V, Pietrowsky R, Pauschinger P, Fehm HL (1988) Influences of cortisol on auditory evoked potentials (AEPs) and mood in humans. Neuropsychobiology 20:145–151

    Google Scholar 

  • Born J, Kern W, Pietrowsky R, Sittig W, Fehm HL (1989a) Centrally active fragments of adrenocorticotropin (ACTH) impair electrophysiological signs of controlled stimulus processing in humans. Psychopharmacology 99:439–444

    Article  PubMed  Google Scholar 

  • Born J, Späth-Schwalbe E, Schwakenhofer H, Kern W, Fehm HL (1989b) Influences of corticotropin-releasing hormone, adrenocorticotropin, and cortisol on sleep in normal man. J Clin Endocrinol Metab 68:904–911

    PubMed  Google Scholar 

  • Branconnier RJ, Cole JO, Gardos G (1979) ACTH 4–10 in the amelioration of neuropsychological symptomatology associated with senile brain syndrome. Psychopharmacology 61:161–165

    Article  PubMed  Google Scholar 

  • Dornbush RL, Shapiro B, Freeman AM (1981) Effects of an ACTH short chain neuropeptide in man. Am J Psychiatry 138:962–964

    PubMed  Google Scholar 

  • Ehlers CL, Reed TK, Henriksen SJ (1986) Effects of corticotropin-releasing factor and growth hormone-releasing factor on sleep and activity in rats. Neuroendocrinology 42:467–474

    PubMed  Google Scholar 

  • Ferris SH, Reisberg B, Gershon S (1980) Neuropeptide effects on cognition in the elderly. In: Poon L (ed) Aging in the 1980's: selected contemporary issues in the psychology of aging. American Psychological Association. Washington, DC

    Google Scholar 

  • Gaillard AWK (1981) ACTH analogs and human performance. In: Martinez JL, Jensen RA, Messing RB, Rigter H, McGaugh JL (eds) Endogenous peptides and learning and memory processes. Academic Press, NY, pp 181–196

    Google Scholar 

  • Gaillard AWK, Varey CA (1979) Some effects of an ACTH 4–9 analog (ORG 2766) on human performance. Physiol Behav 23:78–84

    Google Scholar 

  • Gibbs DM, Vale W (1982) Presence of corticotropin releasing factor-like immunoreactivity in hypophysial portal blood. Endocrinology 111:1418–1420

    PubMed  Google Scholar 

  • Holsboer F, von Bardeleben U, Steiger A (1988) Effects of intravenous corticotropin-releasing hormone upon sleep-related growth hormone surge and sleep EEG in man. Neuroendocrinology 48:32–38

    PubMed  Google Scholar 

  • Janke W, Debus G (1978) Die Eigenschaftswörterliste EWL. Eine mehrdimensionale Methode zur Beschreibung von Aspekten des Befindens. Hogrefe, Göttingen

    Google Scholar 

  • Laux G, Lesch KP, Schwab M (1988) Psychotropic effects of corticotropin-releasing hormone stimulation in depressive patients. Neuropsychobiology 19:40–44

    PubMed  Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    PubMed  Google Scholar 

  • O'Hanlon JF, Fussler C, Slavik J, Grandjean EP (1979) ACTH 4–9 analog fails to affect vigilance in elderly men and women. Organon, Oss, The Netherlands

    Google Scholar 

  • Pfaff DW, Teresa M, Silva A, Weiss J (1971) Telemetered recording of hormone effects on hippocampal neurons. Science 172:394–395

    PubMed  Google Scholar 

  • Picton TW, Hillyard SA, Galambos R, Jolla L (1976) Habituation and attention in the auditory system. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology. Springer, Berlin Heidelberg New York, pp 343–389

    Google Scholar 

  • Redding EK (1967) Modification of sensory cortical evoked potentials by hippocampal stimulation. Electroencephalogr Clin Neurophysiol 22:74–83

    Article  PubMed  Google Scholar 

  • Stalla GK, Hartwimmer J, von Werder K, Müller OA (1984) Ovine (o) and human (h) corticotropin releasing factor (CRF) in man: CRF-stimulation and CRF-immunoreactivity. Acta Endocrinol (Copenh) 106:289–297

    PubMed  Google Scholar 

  • Suda T, Tomori N, Yajima F, Sumitomo T, Nakagami Y, Ushiyama T, Demura H, Shizume K (1985) Immunoreactive corticotropin-releasing factor in human plasma. J Clin Invest 76:2026–2029

    PubMed  Google Scholar 

  • Tannahill LA, Dow RC, Fairhall KM, Robinson ICAF, Fink G (1988) Comparison of adrenocorticotropin control in Brattleboro, Long-Evans, and Wistar rats. Neuroendocrinology 48:650–657

    PubMed  Google Scholar 

  • Valentino RJ, Foote SL (1988) CRH increases tonic but not sensory-evoked activity of noradrenergic locus coeruleus neurons in unanesthetized rats. J Neurosci 8:1016–1025

    PubMed  Google Scholar 

  • Velasco M, Velasco F (1986) Subcortical correlates of the somatic, auditory and visual vertex activities. Electroencephalogr Clin Neurophysiol 63:62–67

    Article  PubMed  Google Scholar 

  • Velasco M, Velasco F, Olvera A (1985) Subcortical correlates of the somatic, auditory and visual vertex activities. I. Bipolar EEG responses and electrical stimulation. Electroencephalogr Clin Neurophysiol 61:519–529

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Born, J., Bathelt, B., Pietrowsky, R. et al. Influences of peripheral adrenocorticotropin 1–39 (ACTH) and human corticotropin releasing hormone (h-CRH) on human auditory evoked potentials (AEP). Psychopharmacology 101, 34–38 (1990). https://doi.org/10.1007/BF02253714

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253714

Key words

Navigation