Skip to main content
Log in

General models of circum-global and quasi-global radiation on Hills of simple geometrical shapes

Allgemeine Modelle der Zirkumglobal- und Quasiglobalstrahlung auf Bergen mit einfacher geometrischer Form. I. Teil: Theoretische Betrachtungen

Modèles généraux pour le rayonnement solaire circumglobal et quasiglobal sur les collines avec simples formes géométriques. Part I: Traités théoretiques

Part I: Theoretical consideration

  • Published:
Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B Aims and scope Submit manuscript

Summary

Models for calculation of circum-global and quasi-global radiation at any location on a cone-shaped hill and on a ridge having a form of a laying prism, in all weather conditions, are presented. Applied equations that include all main parameters, viz. astronomical, meteorological and topographical, are derived from basic equations. Special emphasis is given to the treatment of circum-global radiation, as defined by Flach [11]. Computer models are made, peculiarities of which are described, the main one being their generality.

Zusammenfassung

Es werden allgemeine Berechnungsmodelle der Zirkumglobal- und Quasiglobalstrahlung, die auf eine beliebige Stelle auf einem kegelförmigen Berg oder auf einem Bergrücken, bei beliebigen Wetterverhältnissen fallen, entwickelt. Die angewendeten Gleichungen, welche die wesentlichen astronomischen, meteorologischen und topographischen Parameter beinhalten, werden aus den Grundgleichungen abgeleitet. Ausführlich wird die Zirkumglobalstrahlung (nach der Definition von Flach [11]) behandelt. Auf dieser Grundlage werden die Rechenmodelle entwickelt und ihre Eigenheiten werden beschrieben. Sie sind für den allgemeinen Gebrauch geeignet.

Résumé

Les modèles pour la calculation du rayonnement circumglobal et quasiglobal sur les locations quiconques sur la colline conique et sur la faîte sont présentés. Les équations applicables comprenant tous les paramètres astronomiques, météorologiques et topographiques sont développées des équations fondamentales. Le rayonnement circumglobal (défini par Flach [11]) est traité avec emphase. Les modèles numériques sont faits aux bases mentionnées plus haut; les particularités des modèles sont décrites, la principale ayant la généralité.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

albedo of the soil surface

dt :

time interval

dσ:

surface element on the soil surface on which radiation is reflected

h :

height of the receiver above the soil surface

H-h :

vertical distance of the receiver from the hill top

I o :

solar constant

j I :

flux density of direct solar radiation

j′ I :

flux density of direct solar radiation at partially cloudy sky

j D :

flux density of diffuse radiation at horizontal plane

j D, ε :

flux density of diffuse radiation at the slope

j′ D, ε :

flux density of diffuse radiation at the slope from cloudless region of the sky

j cl D, ε :

flux density of diffuse radiation at the slope from cloudy regions of the sky

j R :

flux density of reflected radiation

k(z) :

empirical coefficient, depending on zenith distance of the sun

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {L} \) :

vector field, vectors from soil surface elements to the receiver

m :

relative optic path

n :

duration of sunshine during time periodN

N :

time period (e. g. one hour)

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {n} \) :

normal unit vector from soil surface element

r r :

radius of the sphere presenting the receiver

r (z, gen):

empirical coefficient depending on zenith distance of the sun and cloud genera (it is used at calculation of diffuse radiation from cloudy regions of the sky)

R CG :

circum-global radiation obtained by the receiver — the sphere per unit time

R cl CG :

circum-global radiation obtained by the receiver per unit time in cloudy weather

R D :

diffuse radiation obtained by the receiver per unit time

R′ D, ε :

diffuse radiation gained by the receiver per unit time in cloudy weather from cloudless region of the sky

R cl D, ε :

diffuse radiation obtained by the receiver per unit time in cloudy weather, from cloudy regions of the sky

R I :

direct solar radiation obtained by the receiver per unit time

R′ I :

direct solar radiation obtained by the receiver per unit time at partially cloudy sky

R QG :

quasi-global radiation — sum of direct solar radiation and diffuse radiation obtained by a unit surface on a tilted plane per unit time

R cl QG :

quasi-global radiation — sum of direct solar radiation and diffuse radiation received by a unit surface on a tilted plane in cloudy weather per unit time

R R :

reflected radiation obtained by the receiver — the sphere per unit time

R′ R :

reflected radiation obtained by the receiver — the sphere per unit time, in cloudy weather

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {s} \) :

unit vector in direction of sun

t ar :

time of astronomic sunrise

t as :

time of astronomic sunset

t rr :

time of actual sunrise with regard to the receiver

t rs :

time of actual sunset with regard to the receiver

z :

zenith distance of the sun

q a :

partial transmission coefficient of the atmosphere with regard to absorption

q s :

partial transmission coefficient of the atmosphere with regard to scattering

ε:

inclination of the slope

ϑ:

zenith distance

π:

Ludolf number

ρ=r 2 m /r 2 :

wherer=distance between the center of the Sun and Earth at the actual time of the year andr m =the mean distance between the centers of the Sun and the Earth

Σ:

summation sign

σ:

surface

ϕ:

azimuth

ϕ r :

azimuth of the receiver on the hill

ϕ g :

latitude

References

  1. Milankovich, M.: Kanon der Erdbestrahlung. Beograd: Königlich Serbische Akademie. 1941.

    Google Scholar 

  2. Van Vijk, W. R.: Physics of Plant Environment. Amsterdam: North Holland Publishing Company, 1963.

    Google Scholar 

  3. Dirmhirn, I.: Das Strahlungsfeld im Lebensraum. Frankfurt: Akademische Verlagsgesellschaft, 1964.

    Google Scholar 

  4. Gates, D. M.: Energy Exchange in the Biosphere. New York: Harper & Row Biological Monographs. 1962.

  5. Junghans, H.: Die Intensität der direkten Sonnenstrahlung auf geneigten Flächen. Angew. Met.,5, 217–221 (1967).

    Google Scholar 

  6. Kaempfert, W., und A. Morgen: Die Besonnung. Z. f. Meteor.6, 138–146 (1952).

    Google Scholar 

  7. Schram, K., und J. C. Thams: Die kurzwellige Strahlung von Sonne und Himmel auf verschieden orientierte und geneigte Flächen. Arch. Met. Geoph. Biokl., Ser. B,15, 99–126 (1967).

    Google Scholar 

  8. La Fleur, D.: La distribution topographique du rayonnement solaire au mont St. Hilaire pour la periode estivale de 1968. McGill University, Montreal, Climat. Bull. No. 6, 44–60 (1969).

    Google Scholar 

  9. Bosnayake, B. K.: Comparison of the Field Performance of Three Types of Solar Radiation Measuring Instruments. McGill University, Montreal, Climat. Bull., No. 8, 17–25 (1970).

    Google Scholar 

  10. Fuggle, R. F.: Computer Programme for Determining Direct Short-Wave Radiation Income on Slopes. McGill University, Montreal, Climat. Bull., No. 7. 8–16 (1970).

    Google Scholar 

  11. Flach, E.: Vergleichende bioklimatische Untersuchungen zum Verhalten der Sonnenscheindauer und kurzwelligen Wärmestrahlung im Hochgebirge und Flachland. Z. angew. Bäder- und Klimaheilk.,15, 3–27 (1968).

    Google Scholar 

  12. Lee, R., and A. Baumgartner: The Topography and Insolation Climate of a Mountainous Area. Forest Sci.,12, 258–266 (1966).

    Google Scholar 

  13. Jenik, J., and M. Reimanek: Interpretation of Direct Solar Irradiation in Ecology. Arch. Met. Geoph. Biokl., Ser. B,17, 413–428 (1969).

    Google Scholar 

  14. Riblet, J.: Über eine mathematische Methode, bei gegebenem natürlichen Horizont die tatsächliche Tagessumme der Bestrahlung und die Intensität der auf eine geneigte Bodenfläche einfallenden Sonnen-, Himmels- und Globalstrahlung zu bestimmen. XI. Internationale Tagung für Alpine Meteorologie, September 1970, 107–112. Offenbach a. M.: Deutscher Wetterdienst. 1971.

    Google Scholar 

  15. Gräfe, K.: Strahlungsempfang vertikaler, ebener Flächen, Globalstrahlung von Hamburg. Ber. Deutscher Wetterdienst,5, 3–15 (1956).

    Google Scholar 

  16. Hočevar, A.: Global Radiation at Ljubljana, Slovenian Meteor. Soc. Ljubljana. Razprave-PapersVIII, 3–30 (1967).

    Google Scholar 

  17. Hočevar, A.: Rough Values of Global Radiation and Quasi-Global Radiation for Different Parts of Slovenia (Yugoslavia). Zbornik Biotehniške fakultete, zvezekXVI. 7–11 (1969).

    Google Scholar 

  18. Terjung, W. H., and S. S. F. Louie: Potential Solar Radiation on Plant Shapes. Int. J. Biometeor.,16, 25–43 (1972).

    Article  Google Scholar 

  19. Hočevar, A.: Short Wave Radiation on Various Slopes of a Hill Measured with Bellani Spherical Pyranometers. XII. Internationale Tagung für Alpine Meteorologie (Sarajevo, September 1972), Zbornik meteoroloških i hidroloških radova,5, 317–320 (1974).

    Google Scholar 

  20. Kondratyev, K. Ja.: Radiative Heat Exchange in the Atmosphere. London: Pergamon Press. 1965.

    Google Scholar 

  21. Robinson, N.: Solar Radiation. Amsterdam: Elsevier Publishing Comp. 1966. Cit. F. Albrecht.

    Google Scholar 

  22. Vujević, P.: Klimatološka statistika. Beograd: Naučna knjiga. 1956.

    Google Scholar 

  23. Conrad, V., and L. W. Pollak: Methods in Climatology. Cambridge: Harvard University Press. 1962.

    Google Scholar 

  24. Tverskoi, P. N.: Physics of the Atmosphere. A Course in Meteorology. Transl. from Russian. Jerusalem: IPST. 1965.

    Google Scholar 

  25. Hočevar, A., and J. Rakovec: General Models of Circum-Global and Quasi-Global Radiation on Hills of Simple Geometrical Shapes. Part II. Applications, Verification With Measurements. Arch. Met. Geoph. Biokl., Ser. B,25, 165–176 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

The work was done with the support of Sklad Borisa Kidriča (Contracts SBK 481/33-73 and SBK 481/1538-74).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hočevar, A., Rakovec, J. General models of circum-global and quasi-global radiation on Hills of simple geometrical shapes. Arch. Met. Geoph. Biokl. B. 25, 151–164 (1977). https://doi.org/10.1007/BF02253697

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253697

Keywords

Navigation