Journal of Biomedical Science

, Volume 3, Issue 1, pp 14–19 | Cite as

Camptothecin: A promising antiretroviral drug

  • Panayotis Pantazis
Review

Abstract

The plant alkaloid camptothecin (CPT) has demonstrated the ability to inhibit replication of the equine anemia virus (E1AV) and the human immunodeficiency virus (HIV) in infected cells in culture. Further, CPT prevented the development of lymphoma and erythroleukemia in mice infected with the Moloney murine leukemia virus and the Friend erythroleukemia virus, respectively, as assessed by prevention or reduction of splenomegaly. These results were observed at concentrations that had no apparent toxic effects on the mice. It has been suggested that the antiretroviral activity of CPT is mediated by the host cell's enzyme topoisomerase I. Taken collectively, the findings indicate that CPT analogues may develop into potent drugs against various human and animal diseases caused by diverse retroviruses.

Key Words

Camptothecin Antiretroviral drug 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arisawa M, Gunasekera SP, Cordell GA, Farnsworth NR. Plant anticancer agents. XXI. Constituents ofMerriliodendron megacarpum. Plant Med 43:404–407;1981.Google Scholar
  2. 2.
    Abelson HT, Penman S. Selective interruption of high molecular weight RNA synthesis in HeLa cells by camptothecin. Nature New Biol 237:144–146;1972.Google Scholar
  3. 3.
    Berkhout B, Silverman RH, Jeang K-T. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59:273–282;1989.Google Scholar
  4. 4.
    Chang H-K, Gallo RG, Ensoli B. Regulation of cellular gene expression and function by the human immunodeficiency virus type 1 Tat protein. J Biomed Sci 2:189–202;1995.Google Scholar
  5. 5.
    Conffin JM. Retroviridae and their replication. In Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology. New York, Raven Press, vol 2, 1437–1500;1990.Google Scholar
  6. 6.
    Danishefsky S, Quick J, Horwitz SB. Synthesis and biological activity in the camptothecin series. Tetrahedron Letter 27:2525–2528;1973.Google Scholar
  7. 7.
    Emerman M, Guyader M, Montagnier L, Baltimore D, Muesing MA. The specificity of the human immunodeficiency virus type 2 transactivator is different from that of human immunodeficiency virus type 1. EMBO J 6:3755–3760;1987.Google Scholar
  8. 8.
    Friend C. Cell free transmission in adult Swiss mice of a disease having the character of a leukemia. J Exp Med 105:307–318;1957.Google Scholar
  9. 9.
    Giovanella B. Topoisomerase I inhibitors. In: Teicher B, ed. Cancer Drug Discovery, New York, Academic Press, in press, 1995.Google Scholar
  10. 10.
    Giovanella BC, Hinz HR, Kozielski AJ, Stehlin JS, Silber R, Potmesil M. Complete growth inhibition of human cancer xenografts in nude mice by treatment with 20(S)-camptothecin. Cancer Res 51:3052–3055;1991.Google Scholar
  11. 11.
    Govindachari TR, Viswanathan N. 9-Methoxycamptothecin: A new alkaloid fromMappia foetida miers. Ind J Chem 10:453–454;1972.Google Scholar
  12. 12.
    Gunasekera SP, Badawi MM, Cordell GA, Farnsworth NR, Chitnis M. Potential anticancer agents. X. Isolation of camptothecin and 9-methoxy-camptothecin fromErvatamia heyneana. J Nat Prod 42:275–277;1977.Google Scholar
  13. 13.
    Haseltine WA. Molecular biology of the human immunodeficiency virus type 1. FASEB J 5:2349–2360;1991.Google Scholar
  14. 14.
    Hertzberg RP, Caranfa MJ, Holdern KG, Jakas DR, Gallagher G, Mattern MR, Mong S-M, O'Leary-Bartus J, Johnson RK, Kingsbury WD. Modification of the hydroxy lactone ring of camptothecin: Inhibition of mammalian topoisomerase I and biology activity. J Med Chem 32:715–720;1989.Google Scholar
  15. 15.
    Hizi A, Gazit A, Buthmann D, Yaniv A. DNA-processing activities associated with the purified α, β2, αβ2 molecular forms of avian sarcoma virus RNA-dependent DNA polymerase. J Virol 41:974–981;1982.Google Scholar
  16. 16.
    Horwitz SB, Chang C-K, Grollman AP. Studies on camtothecin. 1. Effects on nucleic acid and protein synthesis. Mol Pharmacol 7:632–644;1971.Google Scholar
  17. 17.
    Horwitz MS, Horwitz SB. Intracellular degradation of HeLa and adenovirus type 2 DNA induced by camptothecin. Biochem Biophys Res Commun 45:723–727;1971.Google Scholar
  18. 18.
    Hsiang Y-H, Liu LF, Wall ME, Wani MC, Kirshenbaum S, Silber R, Potmesil M. DNA topoisomerase I-mediated DNA cleavage and cytotoxicity of camptothecin analogs. Cancer Res 49:4385–4389;1989.Google Scholar
  19. 19.
    Huang L-M, Joshi A, Willey R, Oresntein J, Jeang K-T. Human immunodeficiency viruses regulated by alternative trans-activators: Genetic evidence for a novel non-transcriptional function of Tat in virion infectivity. EMBO J 13:2886–2896;1994.Google Scholar
  20. 20.
    Jardine D, Tachedjian G, Locarini S, Birch C. Cellular topoisomerase I activity associated with HIV-1. AIDS Res Human Retrovir 9:1245–1250;1993.Google Scholar
  21. 21.
    Jaxel C, Kohn KW, Wani MC, Wall ME, Pommier Y. Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase. I. Evidence for a specific receptor site and a relation to antitumor activity. Cancer Res 49:1465–1469;1989.Google Scholar
  22. 22.
    Jeang K-T, Gatignol A. Comparison of regulatory features among primate lentiviruses. Curr Top Microbiol Immunol 188:123–144;1995.Google Scholar
  23. 23.
    Kabat D. Molecular biology of Friend viral erythroleukemia. Curr Top Microbiol Immunol 148:1–42;1989.Google Scholar
  24. 24.
    Kessel D. Effects of camptothecin on RNA synthesis in leukemia L1210 cells. Biochim Biophys Acta 246:225–223;1971.Google Scholar
  25. 25.
    Kingsbury WD, Boehm JC, Jakas DR, Holden KG, Hecht SM, Gallagher G, Caranfa MJ, McCabe FL, Faucette LF, Johnson RK, Hertzberg RP. Synthesis of water-soluble (aminoalkyl) camptothecin analogues: Inhibition of topoisomerase I and antitumor activity. J Med Chem 34:98–107;1991.Google Scholar
  26. 26.
    Kono YK, Hirasawa Y, Fukunaga Y, Taniguchi T. Recrudesence of equine infectious anemia by treatment with immunosuppressive drugs. Natl Inst Anim Health Q 16:8–15;1976.Google Scholar
  27. 27.
    Kunimoto T, Nitta K, Tanaka T, Uehara N, Baba H, Takeuchi M, Yokokura T, Sawada S, Miyasaka T, Mutai M. Antitumor activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camtothecin: A novel water-soluble derivative of camptothecin, against murine tumors. Cancer Res 47:5944–5947;1987.Google Scholar
  28. 28.
    Lee JC, Ihle JN. Chronic immunostimulation is required for Moloney leukemia virus induced lymphomas. Nature 228:407–410;1981.Google Scholar
  29. 29.
    Li CJ, Wang C, Pardee AB. Camptothecin inhibits tat-mediated transactivation of type 1 human immunodeficiency virus. J Biol Chem 269:7051–7054;1994.Google Scholar
  30. 30.
    Li CJ, Zhang LJ, Dezube BJ, Crumpacker CS, Pardee AB. Three inhibitors of type 1 human immunodeficiency virus long terminal repeatdirected gene expression and virus replication. Proc Natl Acad Sci USA 90:1839–1842;1993.Google Scholar
  31. 31.
    Liu LF. Biochemistry of camptothecin. In Potmesil M, Pinedo H, eds. Camptothecins: New Anticancer Agents. Boca Raton, CRC Press, 9–19;1995.Google Scholar
  32. 32.
    Liu LF, ed. DNA Topoisomerases: Biochemistry and Molecular Biology. Adv Pharmacol 29A, San Diego, Academic Press, 1–225;1994.Google Scholar
  33. 33.
    Liu LF, ed. DNA Topoisomerases: Topoisomerase-Targeting Drugs. Adv Pharmacol 29B, San Diego, Academic Press, 1–297;1994.Google Scholar
  34. 34.
    McGuire TC, Crawford TB. Immunology of a persistent retrovirus infectious anemia. Adv Vet Sci Comp Med 23:137–159;1979.Google Scholar
  35. 35.
    McGuire TC, Crawford TB, Henson JB. Immunofluorescent localization of equine infectious anemia virus in tissue. Am J Pathol 62:283–294;1971.Google Scholar
  36. 36.
    McGuire TC, Henson JB, Quist SE. Viral induced hemolysis in equine infectious anemia. Am J Vet Res 30:2091–2097;1969.Google Scholar
  37. 37.
    Muggia FM. Twenty years later: Review of clinical trials with camptothecin sodium (NSC 100880). In: Potmesil M, Pinedo H, eds. Camptothecins: New Anticancer Agents. Boca Raton, CRC Press, 43–50;1995.Google Scholar
  38. 38.
    Pantazis P. The water-insoluble camptothecin analogues: Promising drugs for the effective treatment of haematological malignancies. Leuk Res (in press);1995.Google Scholar
  39. 39.
    Pantazis P, Early JA, Kozielski AJ, Mendoza JT, Hinz HR, Giovanella BC. Regression of human breast carcinoma tumors in immunodeficient mice treated with 9-nitrocamptothecin: Differential response of nontumorigenic and tumorigenic human breast cells in vitro. Cancer Res 53:1577–1582;1993.Google Scholar
  40. 40.
    Pantazis P, Early JA, Mendoza JT, DeJesus AR, Giovanella BC. Cytotoxic efficacy of 9-nitrocamptothecin in the treatment of human malignant melanoma cells in vitro. Cancer Res 54:771–776;1994.Google Scholar
  41. 41.
    Pantazis P, Hinz HR, Mendoza JT, Kozielski AJ, Williams LJ, Stehlin JS, Giovanella BC. Complete inhibition of growth followed by death of human malignant melanoma cells in vitro and regression of human melanoma xenografts in immunodeficient mice by camptothecins. Cancer Res 52:3980–3987;1992.Google Scholar
  42. 42.
    Pantazis P, Kozielski AJ, Mendoza JT, Early JA, Hinz HR, Giovanella BC. Camptothecin derivatives induce regression of human ovarian carcinomas grown in nude mice and distinguish between non-tumorigenic and tumorigenic cells in vitro. In J Cancer 53:863–871;1993.Google Scholar
  43. 43.
    Pommier Y, Podderin B, Gupta M, Jenkins J. DNA topoisomerases I and II cleavage sites in the type 1 human immunodeficiency virus (HIV-1). DNA promoter region. Biochem Biophys Res Commun 200:1601–1609;1991.Google Scholar
  44. 44.
    Potmesil M, Pinedo H, eds. Camptothecins: New Anticancer Agents. Boca Raton, CRC Press, 1995.Google Scholar
  45. 45.
    Priel E, Aflalo E, Chechelnitsky G, Benharroch D, Aboud M, Segal S. Inhibition of retrovirus-induced disease in mice by camptothecin. J Virol 67:3624–3629;1993.Google Scholar
  46. 46.
    Priel E, Showalter SD, Blair DG. Inhibition of human Immunodeficiency virus (HIV-1) replication in vitro by noncytoxic doses of camptothecin, a topoisomerase I inhibitor. AIDS Res Hum Retrovir 7:65–72;1991.Google Scholar
  47. 47.
    Priel E, Showalter SD, Roberts M, Oroszlan S, Segar S, Aboud M, Blair DG. Topoisomerase I activity associated with human immunodeficiency virus (HIV) particles and equine infectious anemia virus core. EMBO J 12:4167–4172;1990.Google Scholar
  48. 48.
    Priel E, Showalter SD, Roverts M, Oroszlan S, Blair DG. The topoisomerase I inhibitor, camptothecin, inhibits equine infectious anemia virus replication in chronically infected CF2Th cells. J Virol 65:4137–4141;1991.Google Scholar
  49. 49.
    Rubin E, Wood V, Bharti A, Trites D, Lynch C, Hurwitz S, Bartel S, Levy S, Rosowsky A, Toppmeyer D, Kufe D. A phase I and pharmacokinetic study of a new camptothecin derivative 9-aminocamptothecin. Clin Cancer Res 1:269–276;1995.Google Scholar
  50. 50.
    Steffy K, Wong-Staal F. Genetic regulation of human immunodeficiency virus. Microbiol Reviews 55:193–205;1991.Google Scholar
  51. 51.
    Stehlin JS, Natelson EA, Hinz HR, Giovanella BC, de Ipolyi PD, Fehir KM, Trezona TP, Vardeman DM, Harris NJ, Marcee AK, Kozielski AJ, Ruiz-Razura A. Phase I clinical trial and pharmacokinetics resulted with oral administration of 20(S)-camptothecin. In: Potmesil M, Pinedo H, eds. Camptothecins: New Anticancer Agents. Boca Raton, CRC Press; 59–65;1995.Google Scholar
  52. 52.
    Takahasi H, Matsuda M, Kojima A, Sta T, Andoh T, Kurata T, Nagashima K, Hall WW. Human immunodeficiency virus type 1 reverse transcriptase: Enhancement of activity by interaction with cellular topoisomerase I. Proc Natl Acad Sci USA 92:5694–5698;1995.Google Scholar
  53. 53.
    Teich N, Wyke T, Mak A, Bernstein A, Hardy W. Pathogenesis of retrovirus-induced disease. In: Weiss R, Teich N, Varmus H, Coffin J, eds. Moecular Biology of Tumor Viruses: RNA Tumor Viruses. Cold Spring Harbor, Cold Spring Harbor Laboratory, NY, 785–998;1982.Google Scholar
  54. 54.
    Thormar H. The growth cycle of visna virus in monolayer cultures of sheep cells. Virology 19:273–278;1963.Google Scholar
  55. 55.
    Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor fromCamptotheca acuminata. J Am Chem Soc 88:3888–3890;1966.Google Scholar
  56. 56.
    Weiss R, Teich N, Varmus H, Coffin J. In: Molecular Biology of Tumor Viruses: RNA Tumor Viruses, ed 2. New York, Cold Spring Harbor, 1985.Google Scholar
  57. 57.
    Wobbe CR, Dean F, Weissbach L, Hurwitz J. In vitro replication of duplex circular DNA containing the simian virus 40 DNA origin site. Proc Natl Acad Sci USA 82:5710–5714;1985.Google Scholar
  58. 58.
    Wong-Staal F. Human Immunodeficiency viruses and their replication. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology, vol 2. New York, Raven Press, 1529–1543;1990.Google Scholar
  59. 59.
    Wu RS, Kumar A, Warner JR. Ribosomal formation is blocked by camptothecin, a reversible inhibitor of RNA synthesis. Proc Natl Acad Sci USA 68:3009–3014;1971.Google Scholar

Copyright information

© National Science Council 1996

Authors and Affiliations

  • Panayotis Pantazis
    • 1
  1. 1.The Stehlin Foundation for Cancer Research at St. Joseph HospitalHoustonUSA

Personalised recommendations