Skip to main content

Glutamate: its role in learning, memory, and the aging brain

Abstract

l-Glutamate is the most abundant of a group of endogenous amino acids in the mammalian central nervous system which presumably function as excitatory neurotransmitters and under abnormal conditions may behave as neurotoxins. As neurotransmitters, these compounds are thought to play an important role in functions of learning and memory. As neurotoxins, they are believed to be involved in the pathogenesis of a variety of neurodegenerative disorders in which cognition is impaired. Moreover, brain structures which are considered anatomical substrata for learning and memory may be particularly vulnerable to the neurotoxic actions of these excitatory amino acids, especially in the elderly who are also the segment of the population most susceptible to impairments of mnemonic function. This paper is a review of data concerning the role of excitatory amino acids in the processes of learning and memory and in the pathogenesis and treatment of disorders thereof.

This is a preview of subscription content, access via your institution.

References

  • Alger BE, Teyler TJ (1976) Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice. Brain Res 110:463–480

    Article  PubMed  Google Scholar 

  • Allen HL, Iversen LL (1990) Phencyclidine, dizocilpine, and cerebrocortical neurons. Science 247:221

    PubMed  Google Scholar 

  • Ambrozi L, Danielczyk W (1988) Treatment of impaired cerebral function in psychogeriatric patients with memantine — results of a phase II double-blind study. Pharmacopsychiatry 21:144–146

    PubMed  Google Scholar 

  • Aprikyan GV, Gekchyan KG (1988) Release of neurotransmitter amino acids from rat brain synaptosomes. Gerontology 34:35–40

    PubMed  Google Scholar 

  • Ascher P, Nowak L (1988) Quisqualate- and kainate-activated channels in mouse central neurones in culture. J Physiol 399:227–246

    PubMed  Google Scholar 

  • Banay-Schwartz M, Lajtha A, Palkovits M (1989) Changes with ageing in the levels of amino acids in rat CNS structural elements. I. Glutamate and related amino acids. Neurochem Res 14:555–562

    Article  PubMed  Google Scholar 

  • Bliss TVP, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetised rabbit following stimulation of the perforant path. J Physiol 232:357–374

    PubMed  Google Scholar 

  • Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetised rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  Google Scholar 

  • Bliss TVP, Lynch MA (1988) Long-term potentiation of synaptic transmission in the hippocampus: properties and mechanisms. Neurol Neurobiol 35:3–72

    Google Scholar 

  • Bonhaus DW, Perry WB, McNamara JO (1990) Decreased density, but not number, of N-methyl-d-aspartate, glycine and phencyclidine binding sites in hippocampus of senescent rats. Brain Res 532:82–86

    Article  PubMed  Google Scholar 

  • Bormann J (1989) Nemantine is a potent blocker of N-methyl-d-aspartate (NMDA) receptor channels. Eur J Pharmacol 166:591–592

    Article  PubMed  Google Scholar 

  • Bowen DM, Francis PT, Procter AW, Young AB (1992) Treatment of Alzheimer's disease. J Neurol Neurosurg Psychiatry 55:328

    Google Scholar 

  • Bridges RJ, Nieto-Sampedro M, Kadri M, Cotman CW (1987) A novel chloride-dependentl-[3H]glutamate binding site in astrocyte membranes. J Neurochem 48:1709–1715

    PubMed  Google Scholar 

  • Brierly JB, Graham DI (1984) Hypoxia and vascular disorders of the central nervous system. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield's neuropathology. Wiley, New York, pp 125–207

    Google Scholar 

  • Brown TH, Chapman PF, Kairis EW, Keenan CL (1988) Long-term synaptic potentiation. Science 242:724–728

    PubMed  Google Scholar 

  • Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8:189–198

    Article  PubMed  Google Scholar 

  • Butterworth RF (1986) Cerebral thiamine-dependent enzyme changes in experimental Wernicke's encephalopathy. Metab Brain Dis 1:165–175

    Article  PubMed  Google Scholar 

  • Butterworth RF (1982) Neurotransmitter function in thiamine deficiency encephalopathy. Neurochem Int 4:449–464

    Article  Google Scholar 

  • Butterworth RF, Hamel E, Landreville F, Barbeau A (1979) Amino acid changes in thiamine-deficient encephalopathy: some implications for the pathogenesis of Friedreich's ataxia. Can J Neurol Sci 6:217–222

    PubMed  Google Scholar 

  • Chen H-SV, Pellegrini JW, Aggarwal SK, Lei SZ, Lipton SA (1992) Open-channel block of N-methyl-d-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated toxicity. J Neurosci 12:4427–4436

    PubMed  Google Scholar 

  • Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58:293–297

    Article  PubMed  Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity in cortical cell culture. J Neurosci 7:369–379

    PubMed  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  PubMed  Google Scholar 

  • Choi DW (1989) Non-NMDA receptor-mediated neuronal injury in Alzheimer's disease. Neurobiol Aging 10:605–606

    Article  PubMed  Google Scholar 

  • Choi DW, Peters S, Visekul V (1987) Dextrorphan and levorphanol selectively block N-methyl-d-aspartate receptor-mediated neurotoxicity on cortical neurons. J Pharmacol Exp Ther 242:713–720

    PubMed  Google Scholar 

  • Collingridge GL, Bliss TVP (1987) NMDA receptors — their role in long-term potentiation. TINS 10:288–293

    Google Scholar 

  • Collingridge GL, Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210

    Google Scholar 

  • Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol (Lond) 334:33–46

    PubMed  Google Scholar 

  • Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organization of excitatory amino acid receptors and their pathways. TINS 10:273–280

    Google Scholar 

  • Cotman CW, Geddes JW, Bridges RJ, Monaghan DT (1989) N-methyl-d-aspartate receptors and Alzheimer's disease. Neurobiol Aging 10:603–605

    Article  PubMed  Google Scholar 

  • Crook T, Bartus RT, Ferris SH, Whitehouse P, Cohen GD, Gershon S (1986) Age-associated memory impairment. Proposed diagnostic criteria and measures of clinical change: report of a National Institute of Mental Health work group. Dev Neuropsychol 2:261–276

    Google Scholar 

  • David P, Lusky M, Teichberg VI (1988) Involvement of excitatory neurotransmitters in the damage produced in chick embryo retinas by anoxia and extracellular high potassium. Exp Eye Res 46:657–662

    PubMed  Google Scholar 

  • Davies SN, Alford ST, Coan EJ, Lester RAJ, Collingridge GL (1988) Ketamine blocks an NMDA receptor-mediated component of synaptic transmission in rat hippocampus in a voltage-dependent manner. Neurosci Lett 92:213–217

    Article  PubMed  Google Scholar 

  • Davies SN, Lester RAJ, Collingridge GL (1989) Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation. Nature 338:500–503

    Article  PubMed  Google Scholar 

  • Dawson R Jr, Wallace DR, Meldrum MJ (1989) Endogenous glutamate release from frontal cortex of adult and aged rats. Neurobiol Aging 10:665–668

    Article  PubMed  Google Scholar 

  • deKoning-Verst IF (1980) Glutamate metabolism in aging rat brain. Mech Aging Dev 13:83–92

    Article  PubMed  Google Scholar 

  • Deutsch SI, Morihisa JM (1988) Glutamatergic abnormalities in Alzheimer's disease and a rationale for clinical trials withl-glutamate. Clin Neuropharmacol 11:18–35

    PubMed  Google Scholar 

  • Douglas RM, Goddard GV (1975) Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res 86:205–215

    Article  PubMed  Google Scholar 

  • Flood JF, Baker ML, Davis JL (1990) Modulation of memory processing by glutamic acid receptor agonists and antagonists. Brain Res 521:197–202

    Article  PubMed  Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    PubMed  Google Scholar 

  • Foster NL, Giordani B, Mellow A, Aronson S, Berent S (1991) Memory effect of low-dose ketamine in Alzheimer's disease. Neurology 41 [Suppl 1]:214

    Google Scholar 

  • Gaitonde MK, Fayein NA, Johnson AL (1975) Decreased metabolism in vivo of glucose into amino acids of the brain of thiamine deficient rats after treatment with pyrithiamine. J Neurochem 24:1215–1223

    PubMed  Google Scholar 

  • Garthwaite G, Garthwaite J (1986) Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices. Dependence on calcium concentration. Neurosci Lett 66:193–198

    Article  PubMed  Google Scholar 

  • Gilbertson TA, Scobey R, Wilson M (1991) Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells. Science 251:1613–1615

    PubMed  Google Scholar 

  • Gill R, Foster A, Woodruff GN (1987) Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. J Neurosci 7:3343–3349

    PubMed  Google Scholar 

  • Greenamyre JT (1986) The role of glutamate in neurotransmission and in neurologic disease. Arch Neurol 43:1058–1063

    PubMed  Google Scholar 

  • Greenamyre JT, Young AB (1989) Excitatory amino acids and Alzheimer's disease. Neurobiol Aging 10:593–602

    Article  PubMed  Google Scholar 

  • Handelmann GE, Contreras PC, O'Donohue TL (1987) Selective memory impairment by phencyclidine in rats. Eur J Pharmacol 140:69–73

    Article  PubMed  Google Scholar 

  • Handelmann GE, Nevins ME, Mueller LL, Arnolde SM, Cordi AA (1989) Milacemide, a glycine prodrug, enhances performance of learning tasks in normal and amnesic rodents. Pharmacol Biochem Behav 34:823–828

    Google Scholar 

  • Harris EW, Cotman CW (1986) Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl-d-aspartate antagonists. Neurosci Lett 70:132–137

    Article  PubMed  Google Scholar 

  • Himwich WA (1973) Neurobiological aspects of maturation and ageing. In: Ford DH (ed) Progress in brain research. Elsevier, New York, pp 13–25

    Google Scholar 

  • Honey CR, Miljkovic Z, Macdonald JF (1985) Ketamine and phencyclidine cause a voltage-dependent block of responses tol-aspartic acid. Neurosci Lett 61:135–139

    Article  PubMed  Google Scholar 

  • Hood WF, Compton RP, Monahan JB (1989)d-Cycloserine: a ligand for the N-methyl-d-aspartate coupled glycine receptor has partial agonist characteristics. Neurosci Lett 98:91–95

    Article  PubMed  Google Scholar 

  • Huettner JE, Bean BP (1988) Block of N-methyl-d-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci USA 85:1307–1311

    PubMed  Google Scholar 

  • Hume RI, Dingledine R, Heinemann SF (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253:1028–1031

    PubMed  Google Scholar 

  • Iino M, Ozakawa K, Tsuzuki K (1990) Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurones. J Physiol 424:151–165

    PubMed  Google Scholar 

  • Irle E, Markowitsch HJ (1983) Widespread neuroanatomical damage and learning deficits following chronic alcohol consumption or vitamin-B1 deficiency. Behav Brain Res 9:277–294

    Article  PubMed  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  PubMed  Google Scholar 

  • Kauer JA, Nicoll RA (1988) An APV-resistant non-associative form of long-term potentiation in the rat hippocampus. In: Haas HL, Buzsaki G (eds) Synaptic plasticity in the hippocampus. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kemp JA, Foster AC, Wong EHF (1987) Non-competitive antagonists of excitatory amino acid receptors. TINS 10:294–298

    Google Scholar 

  • Kito S, Miyoshi R, Nomoto T (1990) Influence of age on NMDA receptor complex in rat brain studies by in vitro autoradiography. J Histochem Cytochem 38:1725–1731

    PubMed  Google Scholar 

  • Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA receptors expressed in Xenopus oocytes. Science 241:835–837

    PubMed  Google Scholar 

  • Kochhar A, Zivin JA, Lyden PD, Mazzarella V (1988) Glutamate antagonist therapy reduces neurologic deficits produced by focal central nervous system ischemia. Arch Neurol 45:148–153

    PubMed  Google Scholar 

  • Kornhuber J, Bormann J, Retz W, Hubers M, Riederer P (1989) Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 166:589–590

    Article  PubMed  Google Scholar 

  • Kral VA (1962) Senescent forgetfulness: benign and malignant. J Can Med Assoc 86:257–260

    Google Scholar 

  • Langlais PJ, Mair RG (1990) Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain. J Neurosci 10:1664–1674

    PubMed  Google Scholar 

  • Langlais PJ, Mair RG, Anderson CD, McEntee WJ (1988) Long-lasting changes in regional brain amino acids and monoamines in recovered pyrithiamine treated rats. Neurochem Res 13:1199–1206

    Article  PubMed  Google Scholar 

  • Larrabee GJ, McEntee WJ, Crook TH (1992) Age-associated memory impairment. In: Thal LJ, Moos WH, Gamzu ER (eds) Cognitive disorders: pathophysiology and treatment. Marcel Dekker, New York, pp 291–306

    Google Scholar 

  • Lodge D, Aram JA, Church J, Davies SN, Martin D, O'Shaugnessy CT, Zeman S (1987) Excitatory amino acids and phencyclidine like drugs. In: Hicks TP, Lodge D, McLennan H (eds) Neurology and neurobiology, vol 24. Excitatory amino acid transmission. Liss, New York, pp 83–90

    Google Scholar 

  • Lynch G, Baudry M (1984) The biochemistry of memory: a new and specific hypothesis. Science 224:1057–1063

    Google Scholar 

  • Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler F (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305:719–721

    Article  PubMed  Google Scholar 

  • Mair RG, Anderson CD, Langlais PJ, McEntee WJ (1988) Behavioral impairments, brain lesions and monoaminergic activity in the rat following recovery from a bout of thiamine deficiency. Behav Brain Res 27:223–239

    Article  PubMed  Google Scholar 

  • Mamounas LA, Thompson RF, Lynch G, Baudry M (1984) Classical conditioning of the rabbit eyelid response increases glutamate receptor binding in hippocampal synaptic membranes. Proc Natl Acad Sci USA 81:2548–2552

    PubMed  Google Scholar 

  • Maragos WF, Greenamyre JT, Penney JB Jr, Young AB (1987) Glutamate dysfunction in Alzheimer's disease; an hypothesis. TINS 10:65–68

    Google Scholar 

  • Mayer ML, Westbrook GL (1985) The action of N-methyl-d-aspartate acid on mouse spinal neurones in culture. J Physiol 361:65–90

    PubMed  Google Scholar 

  • Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-d-aspartatic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394:501–527

    PubMed  Google Scholar 

  • Mayer ML, Westbrook GL, Vyklicky L (1988) Sites of antagonist action on N-methyl-d-aspartatic acid receptors studied using fluctuation analysis and a rapid perfusion technique. J Neurophysiol 60:645–663

    PubMed  Google Scholar 

  • McDonald JW, Silverstein FS, Johnston MV (1987) MK-801 protects the neonatal brain from hypoxic-ischemic damage. Eur J Pharmacol 140:359–361

    Article  PubMed  Google Scholar 

  • McEntee WJ, Mair RG (1990) The Korsakoff syndrome: a neurochemical perspective. TINS 13:340–344

    PubMed  Google Scholar 

  • McLamb RL, Williams LR, Nanry KP, Wilson WA, Tilson HA (1990) MK-801 impedes the acqisition of a spatial memory task in rats. Pharmacol Biochem Behav 37:41–45

    Google Scholar 

  • Miyoshi R, Kito S, Doudou N, Nomoto T (1990) Age-related changes of strychnine-insensitive glycine receptors in rat brain as studied by in vitro autoradiography. Synapse 6:338–343

    Article  PubMed  Google Scholar 

  • Monaghan DT, Cotman CW (1986) Distribution of N-methyl-d-aspartate-sensitivel-[3H]glutamate binding sites in rat brain. J Neurosci 5:2909–2919

    Google Scholar 

  • Monahan JB, Handelmann GE, Hood WF, Cordi AA (1989)d-Cycloserine, a positive modulator of the N-methyl-d-aspartate receptor, enhances performance of learning tasks in rats. Pharmacol Biochem Behav 34:649–653

    Article  PubMed  Google Scholar 

  • Mondadori C, Weiskrantz L, Buerki H, Petschke F, Fagg GE (1989) NMDA receptor antagonists can enhance or impair learning performance in animals. Exp Brain Res 75:449–456

    Article  PubMed  Google Scholar 

  • Mooradian AD (1988) Effect of aging on the blood-brain barrier. Neurobiol Aging 9:31–39

    PubMed  Google Scholar 

  • Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation of an N-methyl-d-aspartate receptor antagonist, AP5. Nature 319:774–776

    Google Scholar 

  • Najlerahim A, Francis PT, Bowen DM (1990) Age-related alteration in excitatory amino acid neurotransmission in rat brain. Neurobiol Aging 11:155–158

    Article  PubMed  Google Scholar 

  • Nicoll RA, Kauer JA, Malenka RC (1988) The current excitement in long-term potentiation. Neuron 1:97–103

    Article  PubMed  Google Scholar 

  • Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-d-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212

    Article  PubMed  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz Z (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465

    Google Scholar 

  • Olney JW (1989) Excitatory amino acids and neuropsychiatric disorders. Biol Psychiatry 26:505–525

    Article  PubMed  Google Scholar 

  • Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulfur-containing amino acids on the infant mouse central nervous system. Exp Brain Res 14:61–76

    Article  PubMed  Google Scholar 

  • Olney JW, Price MT, Samson L, Labruyere J (1986) The role of specific ions in glutamate neurotoxicity. Neurosci Lett 65:65–71

    Article  PubMed  Google Scholar 

  • Olney JW, Ikonomidou C, Mosinger JL, Fierdich G (1988) MK-801 prevents hypobaric-ischemic neuronal degeneration in infant rat brain. J Neurosci 9:1701–1704

    Google Scholar 

  • Olney JW, Labruyere J, Price MT (1989) Pathological changes in cerebrocortical neurons by phencyclidine and related drugs. Science 244:1360–1362

    Google Scholar 

  • Olney JW, Labruyere J, Wang G, Wozniak DF, Price MT, Sesma MA (1991) NMDA antagonist neurotoxicity: mechanism and prevention. Science 254:1515–1518

    PubMed  Google Scholar 

  • Parada-Turska J, Turski WA (1990) Excitatory amino acid antagonists and memory: effect of drugs acting at N-methyl-d-aspartate receptors in learning and memory tasks. Neuropharmacology 29:1111–1116

    Article  PubMed  Google Scholar 

  • Pellegrini JW, Chen H-SV, Lei SZ, Sucher NJ, Lipton SA (1991) Amantadine derivatives prevent NMDA receptor-mediated neurotoxicity. Soc Neurosci Abstr 17:6

    Google Scholar 

  • Perl TM, Bedard L, Kosatsky T, Hockin JC, Todd ECD, Remis RS (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 322:1775–1780

    PubMed  Google Scholar 

  • Peters S, Koh J, Choi DW (1987) Zinc selectively blocks the action of N-methyl-d-aspartate on cortical neurones. Science 236:589–593

    PubMed  Google Scholar 

  • Plaitakis A, Berl S, Yahr MD (1984) Neurological disorders associated with deficiency of glutamate dehydrogenase. Ann Neurol 15:144–153

    Article  PubMed  Google Scholar 

  • Price MT, Olney JW, Haft R (1981) Age-related changes in glutamate concentration and synaptosomal glutamate uptake in adult rat striatum. Life Sci 28:1365–1370

    Article  PubMed  Google Scholar 

  • Procter AW, Palmer AM, Francis PT, Lowe SL (1988) Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer's disease. J Neurochem 50:790–802

    PubMed  Google Scholar 

  • Ransom RW, Stec NL (1988) Cooperative modulation at [3H]-MK-801 binding to the NMDA receptor-ion channel complex byl-glutamate, glycine, and polyamines. J Neurochem 51:830–836

    PubMed  Google Scholar 

  • Robinson JK, Mair RG (1992) MK-801 protects rats from brain lesions and behavioral impairment following pyrithiamine-induced thiamine deficiency (PTD). Behav Neurosci 106:623–633

    Article  PubMed  Google Scholar 

  • Robinson TN, Robertson C, Cross AJ, Green AR (1990) Modulation of [3H] dizocilpine ([3H]-MK-801) binding to rat cortical N-methyl-d-aspartate receptors by polyamines. Mol Neuropharmacol 1:31–35

    Google Scholar 

  • Rothman S (1985) Excitatory amino acid neurotoxicity is produced by passive chloride influx. J Neurosci 6:1884–1891

    Google Scholar 

  • Schwartz BL, Hashtroudi S, Herting RL, Handerson BA, Deutsch SI (1991) Glycine prodrug facilitates memory retrieval in humans. Neurology 41:1341–1343

    PubMed  Google Scholar 

  • Schwartzkroin P, Wester K (1975) Long-lasting facilitation of a synaptic potential following tetanization in the in vitro hippocampal slice. Brain Res 89:107–119

    Article  PubMed  Google Scholar 

  • Singh L, Oles R, Woodruff GN (1990) In vitro interaction of a polyamine with the NMDA receptor. Eur J Pharmacol 180:391–392

    Article  PubMed  Google Scholar 

  • Smith CCT, Bowen DM, Davison AN (1983) The evoked release of endogenous amino acids from tissue prisms of human neocortex. Brain Res 269:103–109

    Article  PubMed  Google Scholar 

  • Sprosen TS, Woodruff GN (1990) Polyamines potentiate NMDA induced whole-cell currents in cultured striatal neurons. Eur J Pharmacol 179:477–478

    Article  PubMed  Google Scholar 

  • Stewart GR, Zorumski CF, Price MT, Olney JW (1990) Domoic acid: a dementia-inducing excitotoxic food poison with kainic acid receptor specificity. Exp Neurol 110:127–138

    Article  PubMed  Google Scholar 

  • Tamaru M, Yoneda Y, Ogita K, Shimizu J, Nagata Y (1991) Age-related decreases of the N-methyl-d-aspartate receptor complex in the rat cerebral cortex and hippocampus. Brain Res 542:83–90

    Article  PubMed  Google Scholar 

  • Teitelbaum JS, Zatorre RJ, Carpenter S, Gendron D, Evans AC, Gjedde A, Cashman NR (1990) Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N Engl J Med 322:1781–1787

    PubMed  Google Scholar 

  • Troncoso JC, Johnson MV, Hess KM, Griffin JW, Price DL (1981) Model of Wernicke's encephalopathy. Arch Neurol 38:350–354

    PubMed  Google Scholar 

  • Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B (1991) Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252:1715–1718

    Google Scholar 

  • Victor M, Adams RD, Collins GH (1989) The Wernicke-Korsakoff syndrome. FA Davis, Philadelphia

    Google Scholar 

  • Vyklicky L Jr, Krusek J, Edwards C (1988) Differences in the pore sizes of the N-methyl-d-aspartate and kainate cation channels. Neurosci Lett 89:313–318

    Article  PubMed  Google Scholar 

  • Watkins JC, Krogsgaard-Larsen P, Honore T (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. TIPS 11:25–33

    PubMed  Google Scholar 

  • Watson GB, Bolanowski MA, Baganoff MP, Deppeler CL, Lanthorn TH (1990)d-Cycloserine acts as a partial agonist at the gylcine modulatory site of the NMDA receptor expressed in Xenopus oocytes. Brain Res 510:158–160

    Article  PubMed  Google Scholar 

  • Wenk GL, Grey CM, Ingram DK, Spangler EL, Olton DS (1989a) Retention of maze performance inversely correlates with NMDA receptor number in hippocampus and frontal neocortex in rat. Behav Neurosci 103:688–690

    Article  PubMed  Google Scholar 

  • Wenk GL, Pierce DJ, Struble RG, Price DL, Cork LC (1989b) Age-related changes in multiple neurotransmitter systems in the monkey brain. Neurobiol Aging 10:11–19

    Article  PubMed  Google Scholar 

  • Wenk GL, Walker LC, Price DL, Cork LC (1991) Loss of NMDA, but not GABA-A, binding in the brains of aged rats and monkeys. Neurobiol Aging 12:93–98

    Article  PubMed  Google Scholar 

  • Westbrook GL, Mayer ML (1987) Micromolar concentrations of Zn2+ antagonise NMDA and GABA responses of hippocampal neurones. Nature 323:640–643

    Article  Google Scholar 

  • Wheeler DD (1980) Aging of membrane transport mechanisms in the central nervous system-high affinity glutamic acid transport in rat cortical synaptosomes. Exp Gerontol 15:265–284

    Article  Google Scholar 

  • Wheeler DD, Ondo JG (1986) Time course of the aging of the high affinityl-glutamate transporter in rat cortical synaptosomes. Exp Gerontol 21:159–168

    Article  PubMed  Google Scholar 

  • Williams K, Romano C, Molinoff PB (1989) Effects of polyamines on the binding of [3H] MK-801 to the N-methyl-d-aspartate receptor: pharmacological evidence for the existence of a polyamine recognition site. Mol Pharmacol 36:575–581

    PubMed  Google Scholar 

  • Wisniewski HM, Kozlowski PB (1982) Evidence for blood-brain barrier changes in senile dementia of the Alzheimer type (SDAT). Ann NY Acad Sci 396:119–129

    PubMed  Google Scholar 

  • Wozniak DF, Olney JW, Kettinger L III, Price M, Miller JP (1990) Behavioral effects of MK-801 in the rat. Psychopharmacology 101:47–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McEntee, W.J., Crook, T.H. Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology 111, 391–401 (1993). https://doi.org/10.1007/BF02253527

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253527

Key words

  • Glutamate
  • Memory
  • Excitotoxin
  • Aging
  • N-methyl-d-aspartate