Skip to main content
Log in

Signal transduction pathway for anterior-posterior development inDrosophila

  • Review
  • Published:
Journal of Biomedical Science

Abstract

InDrosophila, the establishment of embryonic polarity along the anterior-posterior axis of the egg is determined by the activity of maternal gene products that accumulate during oogenesis. Amongst these are the Bicoid, the Nanos, and the terminal class gene products, some of which are oncoproteins involved in signal transduction for the formation of terminal structures in the embryo. Several signal transduction pathways have been described inDrosophila, and this review explores the potential of oncogene studies using one of those pathways — the terminal class signal transduction pathway — to better understand the cellular mechanisms of proto-oncogenes that mediate cellular responses in vertebrates including humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baek KH, Fabian JR, Sprenger F, Morrison DK, Ambrosio L. The activity of D-raf in torso signal transduction is altered by serine substitution, N-terminal deletion, and membrane targeting. Dev Biol 175:191–204;1996.

    Google Scholar 

  2. Baek KH. The first oncogene inDrosophila melanogaster. Mutat Res 436:131–136;1999.

    Google Scholar 

  3. Bier E. Localized activation of RTK/MAPK pathways duringDrosophila development. Bioessays 20:189–194;1998.

    Google Scholar 

  4. Biggs WH III, Zipursky SL. Primary structure, expression, and signal-dependent tyrosine phosphorylation of aDrosophila homolog of the extracellular signal-regulated kinase. Proc Natl Acad Sci USA 89:6295–6299;1992.

    Google Scholar 

  5. Bishop JM. The molecular genetics of cancer. Science 235:305–311;1987.

    Google Scholar 

  6. Bridges CB, Brehme KF. The Mutations ofDrosophila melanogaster. Carnegie Institute Publication No. 552. Washington, Carnegie Institute, 1944.

    Google Scholar 

  7. Brönner G, Jäckle H. Control and function of terminal gap gene activity in the posterior pole region of theDrosophila embryo. Mech Dev 35:205–211;1991.

    Google Scholar 

  8. Bruder JT, Heidecker G, Rapp UR. Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev 6:545–556;1992.

    Google Scholar 

  9. Buday L, Downward J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73:611–620;1993.

    Google Scholar 

  10. Casanova J, Struhl G. Localized surface activity of torso, a receptor tyrosine kinase, specifies terminal body pattern inDrosophila. Genes Dev 3:2025–2038;1989.

    Google Scholar 

  11. Casci T, Vinós J, Freeman M. Sprouty, an intracellular inhibitor of Ras signaling. Cell 96:655–665;1999.

    Google Scholar 

  12. Cookson C. A powerful genetic punch: Human molecules have much in common with the tiny fruit fly. Financial Times, June 14, 1997.

  13. Degelmann A, Hardy PA, Perrimon N, Mahowald AP. Developmental analysis of the torso-like phenotype inDrosophila produced by maternal effect locus. Dev Biol 115:479–489;1986.

    Google Scholar 

  14. Driever W, Nüsslein-Volhard C. A gradient of bicoid protein inDrosophila embryos. Cell 54:83–93;1988.

    Google Scholar 

  15. Driever W, Nüsslein-Volhard C. The bicoid protein determines position in theDrosophila embryo in a concentration-dependent manner. Cell 54:95–104;1988.

    Google Scholar 

  16. Fantl WJ, Muslin AJ, Kikuchi AI, Martin JA, MacNicol AM, Gross RW, Williams LT. Activation of Raf-1 by 14-3-3 proteins. Nature 371:612–614;1994.

    Google Scholar 

  17. Gaul U, Mardon G, Rubin GM. A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell 68:1007–1019;1992.

    Google Scholar 

  18. Hanks SK, Quinn AM, Hunter T. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52;1988.

    Google Scholar 

  19. Leevers SJ, Paterson HF, Marshall CJ. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369:411–414;1994.

    Google Scholar 

  20. Lu X, Chou T-B, Williams NG, Roberts T, Perrimon N. Control of cell fate determination by p21ras, an essential component of torso signaling inDrosophila. Genes Dev 7:621–632;1993.

    Google Scholar 

  21. Mark GE, MacIntyre RJ, Digan ME, Ambrosio L, Perrimon N.Drosophila melanogaster homologs of the raf oncogene. Mol Cell Biol 7:2134–2140;1987.

    Google Scholar 

  22. Meier P, Evan G. Dying like flies. Cell 95:295–298;1998.

    Google Scholar 

  23. Moodie SA, Willumsen BM, Weber MJ, Wolfman A. Complexes of Ras. GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260:1658–1661;1993.

    Google Scholar 

  24. Morrison DK, Kaplan DR, Rapp UR, Roberts TR. Signal transduction from membrane to cytoplasm: Growth factors and membrane-bound oncogene products increase Raf-1 phosphorylation and associated protein kinase activity. Proc Natl Acad Sci USA 85:8855–8859;1988.

    Google Scholar 

  25. Nishida Y, Hata M, Ayaki T, Ryo H, Yamagata M, Shimizu K, Nishizuka Y. Proliferation of both somatic and germ cells is affected in theDrosophila mutants of raf proto-oncogene. EMBO J 7:775–781;1988.

    Google Scholar 

  26. Nüsslein-Volhard C. Determination of the embryonic areas ofDrosophila. Development (suppl) 1:1–10;1991.

    Google Scholar 

  27. Olivier JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G, Margolis B, Schlessinger J, Hafen E, Pawson T. ADrosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73:179–191;1993.

    Google Scholar 

  28. Perkins LA, Larsen I, Perrimon N. Corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 70:225–236;1992.

    Google Scholar 

  29. Perrimon N, Engstrom L, Mahowald AP. A pupal lethal mutation with a paternally influenced maternal effect on embryonic development inDrosophila melanogaster. Dev Biol 110:480–491;1985.

    Google Scholar 

  30. Perrimon N, Mohler D, Engstrom L, Mahowald AP. X-linked female sterile loci inDrosophila melanogaster. Genetics 113:695–712;1986.

    Google Scholar 

  31. Pignoni F, Baldarelli R, Steingrimmson E, Diaz RJ, Patapoutian A, Merriam JR, Lengyel JA. TheDrosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell 62:151–163;1990.

    Google Scholar 

  32. Pumiglia K, Chow Y-H, Fabian J, Morrison DK, Decker S, Jove R. Raf-1 N-terminal sequences necessary for Ras-Raf interaction and signal transduction. Mol Cell Biol 15:398–406;1995.

    Google Scholar 

  33. Raabe T, Riesgo-Escovar J, Liu X, Bausenwein BS, Deak P, Maroy P, Hafen E. DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between sevenless and Ras1 inDrosophila. Cell 85:911–920;1996.

    Google Scholar 

  34. Rapp UR, Heidecker G, Huleihel M, Cleveland JL, Choi WC, Pawson T, Ihle JN, Anderson WB. Raf family serine/threonine protein kinase in mitogen signal transduction. Cold Spring Harb Symp Quant Biol 53:173–184;1988.

    Google Scholar 

  35. Rommel C, Radziwill G, Moelling K, Hafen E. Negative regulation of Raf activity by binding of 14-3-3 to the amino terminus of Raf in vivo. Mech Dev 64:95–104;1997.

    Google Scholar 

  36. St. Johnston D, Nüsslein-Volhard C. The origin of pattern and polarity in theDrosophila embryo. Cell 68:201–219;1992.

    Google Scholar 

  37. Schüpbach T, Wieschaus E. Maternal effect mutations affecting the segmental pattern ofDrosophila. Roux's Arch Dev Biol 195:302–317;1986.

    Google Scholar 

  38. Simon MA, Dodson GS, Rubin GM. An SH3-SH2-SH3 protein is required for p21Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell 73:169–177;1993.

    Google Scholar 

  39. Sprenger F, Nüsslein-Volhard C. Torso receptor activity is regulated by a diffusible ligand produced at the extracellular terminal regions of theDrosophila egg. Cell 71:987–1001;1992.

    Google Scholar 

  40. Stevens LM, Frohnhöfer HG, Klingler M, Nüsslein-Volhard C. Localized requirement for torso-like expression in follicle cells for development of terminal anlagen of theDrosophila embryo. Nature 346:660–663;1990.

    Google Scholar 

  41. Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF. Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–1467;1994.

    Google Scholar 

  42. Strecker TR, Kongsuwan K, Lengyel J, Merriam J. The zygotic mutant tailless affects the anterior and posterior ectodermal regions of theDrosophila embryo. Dev Biol 113:64–76;1986.

    Google Scholar 

  43. Strecker TR, Merriam JR, Lengyel JA. Graded requirements for the zygotic terminal gene, tailless, in the brain and tail region of theDrosophila embryo. Development 102:721–734;1988.

    Google Scholar 

  44. Taylor SS, Knighton DR, Zheng J, Eyck LFT, Sowadski JM. Structural framework for the protein kinase family. Ann Rev Cell Biol 8:429–462;1992.

    Google Scholar 

  45. Therrien M, Chang HC, Solomon NM, Karim FD, Wassarman DA, Rubin GM. KSR, a novel protein kinase required for RAS signal transduction. Cell 83:879–888;1995.

    Google Scholar 

  46. Therrien M, Wong AM, Rubin GM. CNK, a Raf-binding multidomain protein required for RAS signaling. Cell 95:343–353;1998.

    Google Scholar 

  47. Tsuda L, Inoue YH, Yoo M-A, Mizuno M, Hata M, Lim Y-M, Adachi-Yamada T, Ryo H, Masamune Y, Nishida Y. A protein kinase similar to MAP kinase activator acts downstream of the Raf kinaee inDrosophila. Cell 72:407–414;1993.

    Google Scholar 

  48. Van Aelst L, Barr M, Marcus S, Polverino A, Wigler M. Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci USA 90:6213–6217;1993.

    Google Scholar 

  49. van der Geer P, Hunter T, Linderberg RA. Receptor protein-tyrosine kinases and their signal transduction pathways. Ann Rev Cell Biol 10:251–337;1994.

    Google Scholar 

  50. van der Straten A, Rommel C, Dickson B, Hafen E. The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling inDrosophila. EMBO J 16:1961–1969;1997.

    Google Scholar 

  51. Vojtek AB, Hollenberg SM, Cooper JA. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214;1993.

    Google Scholar 

  52. Wang C, Lehmann R. Nanos is the localized posterior determinant inDrosophila. Cell 66:637–647;1991.

    Google Scholar 

  53. Warne PH, Viciana PR, Downward J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364:352–355;1993.

    Google Scholar 

  54. Weigel D, Jürgens G, Klingler M, Jäckle H. Two gap genes mediated maternal terminal pattern information inDrosophila. Science 248:495–498;1990.

    Google Scholar 

  55. Zhang X-F, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364:308–313;1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, KH., Lee, KY. Signal transduction pathway for anterior-posterior development inDrosophila . J Biomed Sci 6, 314–319 (1999). https://doi.org/10.1007/BF02253520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253520

Key Words

Navigation