Skip to main content

Advertisement

Log in

HIV-1 evolution under pressure of protease inhibitors: Climbing the stairs of viral fitness

  • Review
  • Published:
Journal of Biomedical Science

Abstract

The human immunodeficiency virus (HIV-1) has evolved into a viral quasispecies with a high replication capacity or fitness. Antiretroviral drugs potently inhibit replication of the wild-type virus, but HIV-1 responds by selection of drug-resistant variants. Here we review, in brief, the evolution of resistance to protease inhibitors that is characterized by severe fitness losses and an abundance of subsequent repair strategies. The possibility to restrict HIV-1 fitness is discussed in relation to the control of HIV-1 pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Back NKT, Nijhuis M, Keulen W, Boucher CAB, Oude Essink BB, van Kuilenburg ABP, Van Gennip AH, Berkhout B. Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme. EMBO J 15:4040–4049;1996.

    Google Scholar 

  2. Berkhout B, Klaver B, Das AT. Forced evolution of a regulatory RNA helix in the HIV-1 genome. Nucleic Acids Res 25:940–947;1997.

    Google Scholar 

  3. Berkhout B. Proposed alternatives for the use of anti-HIV drugs. Drug Resist Updates 2:69–70;1999.

    Google Scholar 

  4. Berkhout B, Verhoef K, van Wamel JLB, Back B. Genetic instability of live-attenuated HIV-1 vaccine strains. J Virol 73:1138–1145;1999.

    Google Scholar 

  5. Berkhout B, Das AT. Functional analysis of RNA signals in the HIV-1 genome by forced evolution. In: Barciszewski J, Clark BFC, eds. RNA Biochemistry and Biotechnology. Dordrecht, Kluwer Academic Publishers, in press.

  6. Blain SW, Hendrickson WA, Goff SP. Reversion of a Moloney murine leukemia virus RNase H mutant at a second site restores enzyme function and infectivity. J Virol 69:5113–5116;1995.

    Google Scholar 

  7. Borman A, Paulous S, Clavel F. Resistance of HIV-1 to protease inhibitors: Selection of resistance mutations in the presence and in the absence of the drug. J Gen Virol 77:419–426;1996.

    Google Scholar 

  8. Carrillo A, Stewart KD, Sham HL, Norbeck DW, Kohlbrenner WE, Leonard JM, Kempf DJ, Molla A. In vitro selection and characterization of human immunodeficiency virus type 1 variants with increased resistance to ABT-378, a novel protease inhibitor. J Virol 72:7532–7541;1998.

    Google Scholar 

  9. Carron de la Carrière L, Paulous S, Clavel F, Mammano F. Effects of human immunodeficiency virus type 1 resistance to protease inhibitors on reverse transcriptase processing, activity, and drug sensitivity. J Virol 73:3455–3459;1999.

    Google Scholar 

  10. Coffin JM. HIV population dynamics in vivo: Implications for genetic variation, pathogenesis, and therapy. Science 267:483–489;1995.

    Google Scholar 

  11. Condra JH, Holder DJ, Schleif WA, Blahy OM, Danovich RM, Gabryelski LJ, Graham DJ, Laird D, Quintero JC, Rhodes A, Robbins HL, Roth E, Shivaprakash M, Yang T, Chodakewitz JA, Deutsch PJ, Leavitt RY, Massari FE, Mellors JW, Squires KE, Steigbigel RT, Teppler H, Emini EA. Genetic correlates of in vivo viral resistance to indinavir, a human immunodeficiency virus type 1 protease inhibitor. J Virol 70:8270–8276;1996.

    Google Scholar 

  12. Croteau G, Doyon L, Thibeault D, McKercher G, Pilote L, Lamarre D. Impaired fitness of human immunodeficiency virus type 1 variants with high-level resistance to protease inhibitors. J Virol 71:1089–1096;1997.

    Google Scholar 

  13. Das AT, van Dam AP, Klaver B, Berkhout B. Improved envelope function selected by long-term cultivation of a translation-impaired HIV-1 mutant. Virology 244:552–562;1998.

    Google Scholar 

  14. Domingo E, Martinez-Salas E, Sobrino F, De Latorre JC, Portela A, Ortin J, Lopez-Golindez C, Perez-Brena P, Villa-Nueva N, Najera R, Vandepol S, Steinhauer D, Depolo N, Holland JJ. The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: Biological relevance. Gene 40:1–8;1985.

    Google Scholar 

  15. Domingo E, Escarmis C, Sevilla N, Moya A, Elena SF, Quer J, Novella IS, Holland JJ. Basic concepts in RNA virus evolution. FASEB J 10:859–864;1996.

    Google Scholar 

  16. Domingo E, Holland JJ. RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178;1997.

    Google Scholar 

  17. Doyon L, Croteau G, Thibeault D, Poulin F, Pilote L, Lamarre D. Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors. J Virol 70:3763–3769;1996.

    Google Scholar 

  18. Doyon L, Payant C, Brakier-Gingras L, Lamarre D. Novel Gag-Pol frameshift site in human immunodeficiency virus type 1 variants resistant to protease inhibitors. J Virol 72:6146–6150;1998.

    Google Scholar 

  19. Eastman PS, Mittler J, Kelso R, Gee C, Boyer E, Kolberg J, Urdea M, Leonard JM, Norbeck DW, Mo H, Markowitz M. Genotypic changes in human immunodeficiency virus type 1 associated with loss of suppression of plasma viral RNA levels in subjects treated with ritonavir (norvir) monotherapy. J Virol 72:5154–5164;1998.

    Google Scholar 

  20. Eigen M, McCaskill J, Schuster P. Molecular quasi-species. J Physiol Chem 92:6881–6891;1988.

    Google Scholar 

  21. Fan N, Rank KB, Slade DE, Poppe SM, Evans DB, Kopta LA, Olmsted RA, Thomas RC, Tarpley WG, Sharma SK. A drug resistance mutation in the inhibitor binding pocket of human immunodeficiency virus type 1 reverse transcriptase impairs DNA synthesis and RNA degradation. Biochemistry 35:9737–9745;1996.

    Google Scholar 

  22. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH. Origin of HIV-1 in the chimpanzeePan troglodytes troglodytes. Nature 397:436–441;1999.

    Google Scholar 

  23. Goudsmit J, de Ronde A, de Rooij E, de Boer RJ. Broad spectrum of in vivo fitness of human immunodeficiency virus type 1 subpopulations differing at reverse transcriptase codons 41 and 215. J Virol 71:4479–4484;1998.

    Google Scholar 

  24. Harrigan PR, Bloor S, Larder BA. Relative replication fitness of zidovudine-resistant human immunodeficiency virus type 1 isolates in vitro. J Virol 72:3773–3778;1998.

    Google Scholar 

  25. Ho DD, Toyoshima T, Mo H, Kempf DJ, Norbeck D, Chen C-M, Wideburg NE, Burt SK, Erickson JW, King MK. Characterization of human immunodeficiency virus type 1 variants with increased resistance to a C2-symmetric protease inhibitor. J Virol 68:2016–2020;1994.

    Google Scholar 

  26. Hong L, Zhang X-J, Foundling S, Hartsuck JA, Tang J. Structure of a G48H mutant of HIV-1 protease explains how glycine-48 replacements produce mutants resistant to inhibitor drugs. FEBS Lett 420:11–16;1997.

    Google Scholar 

  27. Hsu M, Inouye P, Rezende L, Richard N, Li Z, Prasad VR, Wainberg MA. Higher fidelity of RNA-dependent DNA mispair extension by M184V drug-resistant than wild-type reverse transcriptase of human immunodeficiency virus type 1. Nucleic Acids Res 25:4532–4536;1997.

    Google Scholar 

  28. Huang H, Chopra R, Verdine GL, Harrison SC. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: Implications for drug resistance. Science 282:1669–1675;1998.

    Google Scholar 

  29. Jacobo-Molina A, Ding J, Nanni RG, Clark ADC Jr, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P, Hizi A, Hughes SH, Arnold E. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc Natl Acad Sci USA 90:6320–6324;1993.

    Google Scholar 

  30. Kaplan A, Michael S, Wehbie R, Knigge M, Paul D, Everitt L, Kempf D, Norbeck D, Erickson J, Swanstrom R. Selection of multiple human immunodeficiency virus type 1 variants that encode viral proteases with decreased sensitivity to an inhibitor of the viral protease. Proc Natl Acad Sci USA 91:5597–5601;1994.

    Google Scholar 

  31. Keulen W, Boucher C, Berkhout B. Nucleotide substitution patterns can predict the requirements for drug-resistance of HIV-1 proteins. Antiviral Res 31:45–57;1996.

    Google Scholar 

  32. Keulen W, Back NKT, van Wijk A, Boucher CAB, Berkhout B. Initial appearance of the 184Ile variant in lamivudine-treated patients is caused by the mutational bias of the human immunodeficiency virus type 1 reverse transcriptase. J Virol 71:3346–3350;1997.

    Google Scholar 

  33. Klaver B, Berkhout B. Evolution of a disrupted TAR RNA hairpin structure in the HIV-1 virus. EMBO J 13:2650–2659;1994.

    Google Scholar 

  34. Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790;1992.

    Google Scholar 

  35. Larder BA, Stammers DK. Closing in on HIV drug resistance. Nat Struct Biol 6:103–106;1999.

    Google Scholar 

  36. Liang C, Rong L, Laughrea M, Kleiman L, Wainberg MA. Compensatory point mutations in the human immunodeficiency virus type 1 Gag region that are distal from deletion mutations in the dimerization initiation site can restore viral replication. J Virol 72:6629–6636;1998.

    Google Scholar 

  37. Loeb DD, Swanstrom R, Everitt L, Manchester M, Stamper SE, Hutchison CA III. Complete mutagenesis of the HIV-1 protease. Nature 340:397–400;1989.

    Google Scholar 

  38. Mammano F, Petit C, Clavel F. Resistance-associated loss of viral fitness in human immunodeficiency virus type 1: Phenotypic analysis of protease and gag coevolution in protease inhibitor-treated patients. J Virol 72:7632–7637;1998.

    Google Scholar 

  39. Markowitz M, Mo H, Kempf DJ, Norbeck DW, Bhat TN, Erickson JW, Ho DD. Selection and analysis of human immunodeficiency virus type 1 variants with increased resistance to ABT-538, a novel protease inhibitor. J Virol 69:701–706;1995.

    Google Scholar 

  40. Molla A, Korneyeva M, Gao Q, Vasanonda S, Schipper PJ, Mo HM, Markowitz M, Chernyavskiy T, Niu P, Lyons N, Hsu A, Granneman GR, Ho DD, Boucher CAB, Leonard JM, Norbeck DW, Kempf DJ. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nature Med 2:760–766;1996.

    Google Scholar 

  41. Myers G, Korber B, Hahn BH, Jeang KT, Mellors JH, McCutchan FE, Henderson LE, Pavlakis GN. Human retroviruses and AIDS. A compilation and analysis of nucleic acid and amino acid sequences. In: Anonymous. Theoretical Biology and Biophysics Group. Los Alamos, Los Alamos National Laboratory, 1995.

    Google Scholar 

  42. Olmsted RA, Slade DE, Kopta LA, Poppe SM, Poel TJ, Newport SW, Rank KB, Biles C, Morge RA, Dueweke TJ, Yagi Y, Romero DL, Thomas RC, Sharma SK, Tarpley WG. (Alkylamino)piperidine bis(heteroaryl) piperizine analogs and potent, broad-spectrum nonnucleoside reverse transcriptase inhibitors of drug-resistant isolates of human immunodeficiency virus type 1 (HIV-1) and select for drug-resistant variants of HIV-1 IIIB with reduced replication phenotypes. J Virol 70:3698–3705;1996.

    Google Scholar 

  43. Oude Essink BB, Back NKT, Berkhout B. Increased polymerase fidelity of the 3TC-resistant variants of HIV-1 reverse transcriptase. Nucleic Acids Res 25:3212–3217;1997.

    Google Scholar 

  44. Patick AK, Rose R, Greytok J, Bechtold CM, Hermsmeier PT, Chen PT, Barrish JC, Zahler R, Colonno RJ, Lin PF. Characterization of a human immunodeficiency virus type 1 variant with reduced sensitivity to an aminodiol protease inhibitor. J Virol 69:2148–2152;1995.

    Google Scholar 

  45. Rezende LF, Curr K, Ueno T, Mitsuya H, Prasad VK. The impact of multidideoxynucleoside resistance-conferring mutations in human immunodeficiency virus type 1 reverse transcriptase on polymerase fidelity and error specificity. J Virol 72:2890–2895;1998.

    Google Scholar 

  46. Ridky T, Leis J. Development of drug resistance to HIV-1 protease inhibitors. J Biol Chem 270:29621–29623;1995.

    Google Scholar 

  47. Ridky TW, Kikonyogo A, Leis J. Drug-resistant HIV-1 proteases identify enzyme residues important for substrate selection and catalytic rate. Biochemistry 37:13835–13845;1998.

    Google Scholar 

  48. Rose RE, Gong Y-F, Greytok JA, Bechtold CM, Terry BJ, Robinson BS, Alan M, Colonno RJ, Lin PF: Human immunodeficiency virus type 1 viral background plays a major role in development of resistance to protease inhibitors. Proc Natl Acad Sci USA 93:1648–1653;1996.

    Google Scholar 

  49. Schinazi R, Larder BA, Mellors J. Mutation in HIV-1 reverse transcriptase and protease associated with drug resistance. Int Antiviral News 5:72–75;1994.

    Google Scholar 

  50. Schinazi RF, Lloyd RM Jr, Nguyen M-H, Cannon DL, McMillan A, Ilksoy N, Chu CK, Liotta DC, Bazmi HZ, Mellors JW. Characterization of human immunodeficiency viruses resistant to oxathiolane-cytosine nucleosides. Antimicrob Agents Chemother 37:875–881;1993.

    Google Scholar 

  51. Taddeo B, Carlini F, Verani P, Engelman A. Reversion of a human immunodeficiency virus type 1 integrase mutant at a second site restores enzyme function and virus infectivity. J Virol 70:8277–8284;1996.

    Google Scholar 

  52. Tantillo C, Ding J, Jacobo-Molina A, Nanni RG, Boyer PL, Hughes SH, Pauwels R, Andries K, Janssen PAJ, Arnold E. Locations of anti-AIDS drug binding sites and resistance mutations in the three-dimensional structure of HIV-1 reverse transcriptase. J Mol Biol 243:369–387;1994.

    Google Scholar 

  53. Verhoef K, Sanders RW, Fontaine V, Kitajima S, Berkhout B. Evolution of the HIV-1 LTR promoter by conversion of an NF-κB enhancer element into a GABP binding site. J Virol 73:1331–1340;1999.

    Google Scholar 

  54. Verhoef K, Berkhout B. A second-site mutation that restores replication of a Tat-defective human immunodeficiency virus. J Virol 73:2781–2789;1999.

    Google Scholar 

  55. Wainberg MA, Drosopoulos WC, Salomon H, Hsu M, Borkow G, Parniak MA, Gu Z, Song Q, Manne J, Islam S, Castriota G, Prasad VR. Enhanced fidelity of 3TC-selected mutant HIV-1 reverse transcriptase. Science 271:1282–1285;1996.

    Google Scholar 

  56. Willey RL, Ross EK, Buckler-White AJ, Theodore TS, Martin MA. Functional interaction of constant and variable domains of human immunodeficiency virus type gp120. J Virol 63:3595–3600;1989.

    Google Scholar 

  57. Winters MA, Schapiro JM, Lawrence J, Merigan TC. Human immunodeficiency virus type 1 protease genotypes and in vitro protease inhibitors susceptibilities of isolates from individuals who were switched to other protease inhibitors after long-term saquinavir treatment. J Virol 72:5303–5306;1998.

    Google Scholar 

  58. Zennou V, Mammano F, Paulous S, Mathez D, Clavel F. Loss of viral fitness associated with multiple Gag and Gag-Pol processing defects in human immunodeficiency virus type 1 variants selected for resistance to protease inhibitors in vivo. J Virol 72:3300–3306;1998.

    Google Scholar 

  59. Zhang Y, Imamichi H, Imamichi T, Lane H, Falloon J, Vasudevachari M, Salzman N. Drug resistance during indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites. J Virol 71:6662–6670;1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkhout, B. HIV-1 evolution under pressure of protease inhibitors: Climbing the stairs of viral fitness. J Biomed Sci 6, 298–305 (1999). https://doi.org/10.1007/BF02253518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253518

Key Words

Navigation