, Volume 56, Issue 4, pp 371–383 | Cite as

The exact region of stability for MacCormack scheme



Let the two dimensional scalar advection equation be given by
$$\frac{{\partial u}}{{\partial t}} = \hat a\frac{{\partial u}}{{\partial x}} + \hat b\frac{{\partial u}}{{\partial y}}.$$
We prove that the stability region of the MacCormack scheme for this equation isexactly given by
$$\left( {\hat a\frac{{\Delta _t }}{{\Delta _x }}} \right)^{2/3} + \left( {\hat b\frac{{\Delta _t }}{{\Delta _x }}} \right)^{2/3} \leqslant 1$$
where Δ t , Δ x and Δ y are the grid distances. It is interesting to note that the stability region is identical to the one for Lax-Wendroff scheme proved by Turkel.

AMS Subject Classifications


Key words

Stability MacCormack scheme advection equation 

Der exakte Stabilitätsbereich für das MacCormack Schema


Wir betrachten die zweidimensionale skalare Advektionsgleichung
$$\frac{{\partial u}}{{\partial t}} = \hat a\frac{{\partial u}}{{\partial x}} + \hat b\frac{{\partial u}}{{\partial y}}$$
und zeigen, daß der Stabilitätsbereich des MacCormack-Schemasgenau durch
$$\left( {\hat a\frac{{\Delta _t }}{{\Delta _x }}} \right)^{2/3} + \left( {\hat b\frac{{\Delta _t }}{{\Delta _x }}} \right)^{2/3} \leqslant 1$$
gegeben ist, wo Δ t , Δ x and δ y die Gitterabstände sind. Interessanterweise ist dieser Stabilitätsbereich identisch mit dem von Turkel für das Lax-Wendroff-Schema bestimmten Stabilitätsbereich.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Collins, G. E.: Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. In: Lecture Notes in Computer Science, pp. 134–183. Berlin, Heidelberg, New York: Springer 1975.Google Scholar
  2. [2]
    Collins, G. E., Hong, H.: Partial cylindrical algrebaic decomposition for quantifier elimination. J. Symb. Comput.12, 229–328 (1991).Google Scholar
  3. [3]
    Hong, H.: An improvement of the projection operator in cylindrical algebraic decomposition. In: International Symposium of Symbolic and Algebraic Computation ISSAC-90, pp. 261–264, 1990.Google Scholar
  4. [4]
    Hong, H.: Improvements in CAD-based quantifier elimination. PhD thesis, The Ohio State University, 1990.Google Scholar
  5. [5]
    Hong, H.: Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination. In: International Conference on Symbolic and Algebraic Computation ISSAC-92, pp. 177–188, 1992.Google Scholar
  6. [6]
    Lax, P. D., Wendroff, B.: Difference schemes for hyperbolic equations with higher order of accuracy. Comm. Pure Appl. Math17, 381–398 (1964).Google Scholar
  7. [7]
    Liska, R., Steinberg, S.: Applying quantifier elimination to stability analysis of difference schemes. Comput. J.36, 497–503 (1993).CrossRefGoogle Scholar
  8. [8]
    MacCormack, R.: The effect of viscosity in hypervelocity impact cratering. AIAA Paper No. 69-354 (1969).Google Scholar
  9. [9]
    Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. J. Symb. Comput.13, 255–352 (1992).Google Scholar
  10. [10]
    Tarski, A.: A decision method for elementary algebra and geometry, 2nd ed. Berkeley: University of California Press, 1951.Google Scholar
  11. [11]
    Turkel, E.: Symmetric hyperbolic difference schemes and matrix problems. Lin Alg. Appl.16, 109–129 (1977).CrossRefGoogle Scholar
  12. [12]
    Wendroff, B.: The stability of MacCormack's method for the scalar advection equations. Appl. Math. Lett.4, 89–91 (1991).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • H. Hong
    • 1
  1. 1.Research Institute for Symbolic ComputationJohannes Kepler UniversityLinzAustria

Personalised recommendations