Journal of Biomedical Science

, Volume 5, Issue 5, pp 343–354 | Cite as

A novel regulator inhibits HBV gene expression

  • Jieh-Yuan Liou
  • King-Song Jeng
  • Ching-Gong Lin
  • Cheng-Po Hu
  • Chungming Chang
Original Paper

Abstract

This study investigated the expression of HBV genes. In the investigation, a novel phenomenon was found in that the expression of HBV genes on a cloned HBV DNA was inhibited by cotransfection with plasmids containing HBV surface genes. Furthermore, the production of viral particles was also reduced as measured by endogenous DNA polymerase assay. S1 mapping analysis and nuclear run on experiment showed that the inhibition occurred at the RNA level due to a decrease in transcriptional initiation. Both mutational analyses and cycloheximide blockage revealed that the HBV surface proteins were not required for inhibition. The deletion study showed that the nucleotides 129 to 620 on the HBV surface gene sequence and the donor and acceptor site (SD/SA) sequence of SV40 were both required for inhibition activity. Furthermore, there was no anti-sense HBV RNA in the transfected cells. Based on these results, a sense RNA of HBV was proposed as a novel regulator which can inhibit HBV gene expression.

Key Words

HBV Surface gene Gene expression Transcription initiation RNA Inhibition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altman S, Kirsebom L, Talbot S. Recent studies of ribonuclease P. FASEB J 7:7–14;1993.Google Scholar
  2. 2.
    Bandyopadhyay SK, Leonard GT Jr, Bandypadhyay T, Stark GR, Sen GC. Transcriptional induction by double-stranded RNA is mediated by interferon-stimulated response elements without activation of interferon-stimulated gene factor 3. J Biol Chem 270:19624–19629;1995.Google Scholar
  3. 3.
    Bass BL. RNA editing and hypermutation by adenosine deamination. Trends Biochem Sci 22:157–162;1997.Google Scholar
  4. 4.
    Beasly RP, Hwang LY, Lin CC, Chien CS. Hepatocellular carcinoma and hepatitis B virus: A prospective study of 22,707 men in Taiwan. Lancet 2:1129–1136;1981.Google Scholar
  5. 5.
    Bisbal C. RNase L: Effector nuclease of an activatable RNA degradation in mammals. Prog Mol Subcell Biol 18:19–34;1997.Google Scholar
  6. 6.
    Bosch V, Kuhn C, Schaller H. Hepatitis B virus replication. In: Domingo E, Holand JT, Ahlquist P, eds. RNA Genetics, vol. 2. Retroviruses, Viroids, and RNA Recombination. Cleveland, CRC Press, 43–58;1988.Google Scholar
  7. 7.
    Brown AM, Jeltsch JM, Roberts M, Chambon P. Activation of pS2 gene transcription is a primary response to estrogen in the human breast cancer cell line MCF-7. Proc Natl Acad Sci USA 81:6344–6348;1984.Google Scholar
  8. 8.
    Bruss V, Ganem D. The role of envelope proteins in hepatitis B virus assembly. Proc Natl Acad Sci USA 88:1059–1063;1991.Google Scholar
  9. 9.
    Caselmann WH, Meyer M, Kekule AS, Lauer U, Hofschneider PH, Koshy R. A trans-activator function is generated by integration of hepatitis B virus preS/S sequences in human hepatocellular carcinoma DNA. Proc Natl Acad Sci USA 87:2970–2974;1990.Google Scholar
  10. 10.
    Cattaneo R, Will H, Hernandez N, Schaller H. Signals regulating hepatitis B surface antigen transcription. Nature 305:336–338;1983.Google Scholar
  11. 11.
    Cattaneo R, Will H, Schaller H. Hepatitis B virus transcription in the infected liver. EMBO J 3:2191–2196;1984.Google Scholar
  12. 12.
    Cech TR, Bass BL. Biological catalysis by RNA. Annu Rev Biochem 55:599–629;1986.Google Scholar
  13. 13.
    Chang C, Jeng KS, Hu C, Lo SJ, Su TS, Ting LP, Chou CK, Han SH, Pfaff E, Salfeld J, Schaller H. Production of hepatitis B virus in vitro by transient expression of cloned HBV DNA in a hepatoma cell line. EMBO J 6:675–680;1987.Google Scholar
  14. 14.
    Chen PJ, Chen CR, Sung JL, Chen DS. Identification of a doubly spliced viral transcript joining the seperated domains for putative protease and reverse transcriptase of hepatitis B virus. J Virol 63:4165–4171;1989.Google Scholar
  15. 15.
    Chiang PW, Hu C, Su TS, Lo SJ, Chu MH, Schaller H, Chang C. Encapsidation of truncated human hepatitis B virus genomes through trans-complementation of the core protein and polymerase. Virology 176:355–361;1990.Google Scholar
  16. 16.
    Chiang PW, Jeng KS, Hu C, Chang C. Characterization of a cis element required for packaging and replication of the human hepatitis B virus. Virology 186:701–711;1992.Google Scholar
  17. 17.
    Decker T. Double-stranded RNA and interfer-on-alpha induce transcription through different molecular mechanisms. J Interferon Res 12:445–448;1992.Google Scholar
  18. 18.
    Delihas N. Regulation of gene expression bytrans-encoded antisense RNA. Mol Microbiol 15:411–414;1995.Google Scholar
  19. 19.
    Dickson C, Eisenman R, Fan H, Huntert E, Teich N. Protein biosynthesis and assembly. In: Weiss R, Teich N, Varmus H, Coffin J, eds. RNA Tumor Viruses, 2nd ed. Cold Spring Harbor, Cold Spring Harbor Laboratory, 513–648;1982.Google Scholar
  20. 20.
    Dugaiczyk A, Law SW, Dennison OE. Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. Proc Natl Acad Sci USA 79:71–75;1982.Google Scholar
  21. 21.
    Eguchi Y. Antisense RNA. Annu Rev Biochem 60:631–652;1991.Google Scholar
  22. 22.
    Enders GH, Ganem D, Varmus HE. Mapping the major transcripts of ground squirrel hepatitis virus: the presumptive template for reverse transcriptase is terminally redundant. Cell 42:297–308;1985.Google Scholar
  23. 23.
    Ganem D, Varmus HE. The molecular biology of hepatitis B virus. Annu Rev Biochem 56:651–693;1987.Google Scholar
  24. 24.
    Gough N. Core and e antigen synthesis in rodent cells transformed with hepatitis B virus DNA is associated with greater than genome length viral messenger RNAs. J Mol Biol 165:683–699;1983.Google Scholar
  25. 25.
    Hildt E, Saher G, Bruss V, Hofschneider PH. The hepatitis B virus large surface protein (LHBs) is a transcriptional activator. Virology 225:235–239;1996.Google Scholar
  26. 26.
    Jeng KS, Daniel A, Lai MMC. A pseudoknot ribozyme structure is active in vivo and required for hepatitis delta virus RNA replication. J Virol 70:2403–2410;1996.Google Scholar
  27. 27.
    Jensen CG, Brown S, Pedersen S. Effect of 4.5S RNA depletion onEscherichia coli protein synthesis and secretion. J Bacteriol 176:2502–2506;1994.Google Scholar
  28. 28.
    Junker M, Galle P, Schaller H. Expression and replication of the hepatitis B virus genome under foreign promoter control. Nucl Acids Res 15:10117–10132;1987.Google Scholar
  29. 29.
    Kaneko S, Miller RH. X-region specific transcription in mammalian hepatitis B virus infected liver. J Virol 62:3979–3984;1988.Google Scholar
  30. 30.
    Kekule AS, Lauer U, Meyer M, Caselmann WH, Hofschneider PH, Koshy R. The preS2/S region of integrated hepatitis B virus DNA encodes a transcriptional transactivator. Nature 343:457–461;1990.Google Scholar
  31. 31.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685;1970.Google Scholar
  32. 32.
    Lauer U, Weiss L, Hofschneider PH, Koshy R. The hepatitis B virus pre-S/S(t) transactivator is generated by 3′ truncations within a defined region of the S gene. J Virol 66:5284–5289;1992.Google Scholar
  33. 33.
    Matrisian LM, Glaichenhaus N, Gesnel MC, Breathnach R. Epidermal growth factor and oncogenes induce transcription of the same cellular mRNA in rat fibroblasts. EMBO J 4:1435–1440;1985.Google Scholar
  34. 34.
    Mirzayan C, Wimmer E. Polioviruses: Molecular biology. In: Webster RG, Granoff A, eds. Encyclopedia of Virology. London, Academic Press;1994.Google Scholar
  35. 35.
    Moss EG, Lee RC, Ambros V. The cold shock domain protein LIN-28 controls developmental timing inC. elegans and is regulated by thelin-4 RNA. Cell 88:637–646;1997.Google Scholar
  36. 36.
    Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J. Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer Res 42:3858–3863;1982.Google Scholar
  37. 37.
    Nepveu A, Marcu KB. Intragenic pausing and antisense transcription within the murinec-myc locus. EMBO J 5:2859–2865;1986.Google Scholar
  38. 38.
    Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975;1993.Google Scholar
  39. 39.
    Obert S, Zachmann-Brand B, Deindl E, Tucker W, Bartenschlager R, Schaller H. A spliced hepadnavirus RNA that is essential for virus replication. EMBO J 15:2565–2574;1996.Google Scholar
  40. 40.
    Ou JH, Bao H, Shih C, Tahara SM. Preferred translation of human hepatitis B virus polymerase from core protein- but not precore protein-specific transcript. J Virol 64:4578–4581;1990.Google Scholar
  41. 41.
    Panning B, Dausman J, Janenisch R. X chromosome inactivation is mediated byXist RNA stabilization. cell 90:907–916;1997.Google Scholar
  42. 42.
    Persing DH, Varmus HE, Ganem D. Inhibition of secretion of hepatitis B surface antigen by a related presurface polypeptide. Science 234:1388–1391;1986.Google Scholar
  43. 43.
    Proud CG. PKR: A new name and new roles. Trends Biochem Sci 20:241–246;1995.Google Scholar
  44. 44.
    Retallack DM, Friedman DI. A role for a small stable RNA in modulating the activity of DNA-binding proteins. Cell 83:227–235;1995.Google Scholar
  45. 45.
    Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, Cold Spring Harbor Laboratory;1989.Google Scholar
  46. 46.
    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 75:5463–5467;1977.Google Scholar
  47. 47.
    Sallie R. Hepatitis B virus replication and mutation are autoregulated by interactions between surface antigen and HBeAg and the HBV DNA polymerase: A functional model with therapeutic implications. Med Hypotheses 48:1–10;1997.Google Scholar
  48. 48.
    Schaller H, Fischer M. Transcriptional control of hepadnavirus gene expression. Curr Top Microbiol Immunol 168:21–39;1991.Google Scholar
  49. 49.
    Sharmeen L, Kuo MYP, Dinter-Gottlieb G, Taylor J. Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. J Virol 62:2674–2679;1988.Google Scholar
  50. 50.
    Sheardown SA, Duthie SM, Johnston CM, Newall AE, Formstone EJ, Arkell RM, Nesterova TB, Alghisi GC, Rastan S, Brockdorff N. Stabilization ofXist RNA mediates initiation of X chromosome inactivation. Cell 91:99–107;1997.Google Scholar
  51. 51.
    Siddiqui A. Expression of hepatitis B virus surface antigen in cultured cells by using recombinant plasmid vectors. Mol Cell Biol 3:143–146;1983.Google Scholar
  52. 52.
    Siddiqui A, Jameel S, Mapoles JE. Transcriptional control elements of hepatitis B surface antigen gene. Proc Natl Acad Sci USA 83:566–570;1986.Google Scholar
  53. 53.
    Standring DN, Ou JH, Rutter WJ. Assembly of viral particles in Xenopus oocytes: Pre-surface-antigens regulate secretion of the viral surface envelope particle. Proc Natl Acad Sci USA 83:9338–9342;1986.Google Scholar
  54. 54.
    Strijker R, Fritz DT, Levinson AD. Adenovirus VAI-RNA regulates gene expression by controlling stability of ribosome-bound RNAs. EMBO J 8:2669–2675;1989.Google Scholar
  55. 55.
    Su TS, Lai CJ, Huang JL, Lin LH, Yauk YK, Chang C, Lo SL, Han SH. Hepatitis B virus transcripts producted by RNA splicing. J Virol 63:3701–3709;1989.Google Scholar
  56. 56.
    Su TS, Lui WY, Lin LH, Han SH, Peng FK. Analysis of hepatitis B virus transcripts in infected human livers. Hepatology 9:180–185;1989.Google Scholar
  57. 57.
    Suzuki T, Masui N, Kajino K, Saito I, Miyamura T. Detection and mapping of spliced RNA from a human hepatoma cell line transfected with the hepatitis B virus genome. Proc Natl Acad Sci USA 86:8422–8426;1989.Google Scholar
  58. 58.
    Svensson C, Akusjarvi G. A novel effect of adenovirus VA RNAI on cytoplasmic mRNA abundance. Virology 174:613–617;1990.Google Scholar
  59. 59.
    Szmuness W. Hepatocellular carcinoma and the hepatitis B virus: Evidence for a causal association. Prog Med Virol 24:40–69;1978.Google Scholar
  60. 60.
    Szostak JW. Enzymatic activity of the conserved core of a group 1 self-splicing intron. Nature 322:83–86;1986.Google Scholar
  61. 61.
    Tiollais P, Pourcel C, Dejean A. The hepatitis B virus. Nature 317:489–495;1985.Google Scholar
  62. 62.
    Tooze J ed. DNA Tumor Viruses. Cold Spring Harbor, Cold Spring Harbor Laboratory;1982.Google Scholar
  63. 63.
    Will H, Cattaneo R, Koch HG, Darai G, Schaller H. Cloned HBV DNA causes hepatitis in chimpanzees. Nature 299:740–742;1982.Google Scholar
  64. 64.
    Wu HL, Chen PJ, Tu SJ, Lin MH, Lai MY, Chen DS. Characterization and genetic analysis of alternatively spliced transcripts of hepatitis B virus in infected human liver tissues and transfected HepG2 cells. J Virol 65:1680–1686;1991.Google Scholar
  65. 65.
    Yaginuma K, Koike K. Identification of a promoter region for 3.6 kilobase mRNA of hepatitis B virus and specific cellular binding protein. J Virol 63:2914–2921;1989.Google Scholar
  66. 66.
    Yuh CH, Chang YL, Ting LP. Transcriptional regulation of precore and pregenomic RNAs of hepatitis B virus. J Virol 66:4073–4084;1992.Google Scholar

Copyright information

© National Science Council 1998

Authors and Affiliations

  • Jieh-Yuan Liou
    • 1
  • King-Song Jeng
    • 3
  • Ching-Gong Lin
    • 1
  • Cheng-Po Hu
    • 1
    • 2
  • Chungming Chang
    • 1
    • 3
  1. 1.Institute of Microbiology and Immunology, School of Life ScienceNational Yang-Ming University
  2. 2.Department of Medical ResearchVeterans HospitalTaipeiTaiwan, ROC
  3. 3.Department of Intramural Research Affairs Division of Molecular and Genomic Medicine ResearchNational Health Research InstitutesTaipeiTaiwan (ROC)

Personalised recommendations