Fibroblast growth factors: Structure-activity on dopamine neurons in vitro

  • M. A. Mena
  • M. J. Casarejos
  • G. Gimenéz-Gallego
  • J. Garcia de Yebenes
Full Papers


We investigated the effect of neurotrophic factors on dopamine (DA) cells in vitro. At concentrations of nanograms/c.c. basic fibroblast growth factor (bFGF) is a more potent DA-trophic agent than brain derived neurotrophic factor (BDNF) or epidermal growth factor (EGF) in fetal mid brain neurons. In these cells, bFGF produces a greater increase of DA levels and percentage of cells positive for tyrosine hydroxylase (TH+) than BDNF and EGF. Acidic fibroblast growth factor (aFGF) was not tested in fetal DA cells since aFGF requires heparin for its effect and fetal mid brain cultures do not grow well in the presence of a high concentration of heparin. We further investigated the effect of bFGF and aFGF, and two of their analogs, in catecholamine rich human neuroblastoma cells NB69. In these cells aFGF, at concentrations of picograms/c.c., increases DA levels, while its analogs, E118 and super short, have no effect. Acidic FGF also increases norepinephrine levels, the number of TH+ cells, and the percentage of TH+ with respect to the total number of nuclei. Basic fibroblast growth factor (bFGF) produced similar, but less potent effects. Acidic FGF was active only in the presence of heparin; the effect of bFGF was independent of heparin. FGFs are promising drugs for the treatment of PD, though further investigations with these compounds should be performed before their use in clinical trials.


Neurotrophic factors FGF DA neurons neuroblastoma cells tissue culture Parkinson's disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anton AH, Sayre DF (1962) A study of the factors affecting the aluminium oxide trihydroxyindole procedure for analysis of catecholamines. J Pharmacol 138: 360–375Google Scholar
  2. Baird A (1994) Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors. Curr Opin Neurobiol 4: 78–86Google Scholar
  3. Bean AJ, Elde R, Cao Y, et al (1991) Expression of acidic and basic fibroblast growth factors in the substantia nigra of rat, monkey, and human. Proc Natl Acad Sci USA 88: 10237–10241Google Scholar
  4. Bean AJ, Elde R, Oellig C, Taylor L, Pettersson R, Hokfelt T (1992) Developmental expression of acidic and basic fibroblast growth factors in substantia nigra and sensory neurons. Soc Neurosci Abstr 22: 953Google Scholar
  5. Beart PM, McDonald D (1980) Neurochemical studies of the mesolimbic dopaminergic pathway: somatodendritic mechanisms and GABAergic neurones in the rat ventral tegmentum. J Neurochem 34: 1622–1629Google Scholar
  6. Blottner D, Westermann R, Grothe C, Bohlen P, Unsicker K (1989) Basic fibroblast growth factor in the adrenal gland: possible trophic role for preganglionic neurons in vivo. Eur J Neurosci 1: 471–478Google Scholar
  7. Bradford MM (1976) A rapid and sensitive metod for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72: 248–254Google Scholar
  8. Burton KA (1956) Study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62: 315–323Google Scholar
  9. Cintra A, Cao Y, Oellig C, Tinner B, Bortolotti F, Goldstein M, Pettersson RP, Fuxe K (1991) Basic FGF is present in dopaminergic neurons of the ventral midbrain of the rat. Neuroreport 2: 597–600Google Scholar
  10. Cuevas P, Carciller F, Ortega S, Zazo M, Nieto I, Gimenez-Gallego G (1991) Hypotensive activity of fibroblast growth factor. Science 254: 1208–1210Google Scholar
  11. Damon DH, D'Amore PA, Wagner JA (1988) Sulfated glycosaminoglycans modify growth factor-induced neurite outgrowth in PC12 cells. J Cell Physiol 135: 293–300Google Scholar
  12. Damon DH, Lobb RR, D'Amore PA, Wagner JA (1989) Heparin potentiates the action of acidic fibroblast growth factor by prolonging its biological half-life. J Cell Physiol 138: 221–226Google Scholar
  13. Drago J, Murphy M, Carroll SM, Harvey RP, Bartlett PF (1991) Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor. Proc Natl Acad Sci USA 88: 2199–2203Google Scholar
  14. Dunnett SB, Bjorklund A (1992) Staging and dissection of rat embryos. In: Rickwwood D, Hames BD (eds) Neural transplantation: a practical approach. Oxford University Press, Oxford, pp 1–19Google Scholar
  15. Engele J, Bohn MC (1991) The neurotrophic effects of fibroblast growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia. J Neurosci 11: 3070–3078Google Scholar
  16. Fu YM, Spirito P, Yu ZX, Biro S, Sasse J, Lei J, Ferrans VJ, Epstein SE, Casscells W (1991) Acidic fibroblast growth factor in the developing rat embryo. J Cell Biol 114: 1261–1273Google Scholar
  17. Giacobini MMJ, Stromber I, Almstrom, Cao Y, Olson L (1993) Fibroblast growth factors enhance dopamine fiber formation from nigral grafts. Dev Brain Res 75: 65–73Google Scholar
  18. Gospodarovicz D, Cheng J (1986) Heparin protects basic and acidic FGF from inactivation. J Cell Physiol 128: 475–484Google Scholar
  19. Hadjiconstatinou M, Fitkin JD, Dalia A, Neff HE (1991) Epidermal growth factor enhances striatal dopaminergic parameters in the MPTP-treated mouse. J Neurochem 57: 479–482Google Scholar
  20. Hyman C, Hofer M, Barde Y-A, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BNDF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350: 230–232Google Scholar
  21. Lindsay RM, Altar CA, Cedarbaum JM, Hyman C, Wiegand SJ (1993) The therapeutic potential of neurotophic factors in the treatment of Parkinson's disease. Exp Neurol 124: 103–118Google Scholar
  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin reagent. J Biol Chem 193: 265–275Google Scholar
  23. MacKinnon RD, Matsui T, Dubois-Dalq M, Raronson SA (1990) FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron 5: 603–614Google Scholar
  24. Mayer E, Dunnett SB, Pellitteri R, Fawcett JW (1993a) Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons. I. Effects in vitro. Neuroscience 56: 379–388Google Scholar
  25. Mayer E, Fawcett JW, Dunnett SB (1993b) Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons. II. Effects on nigral transplants in vivo. Neuroscience 56: 389–398Google Scholar
  26. Mc Geer PL, Tooyama I, Kawamata T, Walker D, Yamada T, Hanai, Kimure H, Iwane M, Igarashi, McGeer EG (1992) Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinsons disease. Soc Neurosci Abstr 18: 1248Google Scholar
  27. Mena MA, De Yebenes JG, Dwork A, Fahn S, Latou N, Herbert J, Flaster E, Slonim D (1989) Biochemical properties of monamine-rich human neuroblastoma cells. Brain Res 486: 286–296Google Scholar
  28. Mena MA, Pardo B, Casarejos MJ, Fahn S, G de Yebenes J (1992) Neurotoxicity of Ievodopa on catecholamine-rich neurons. Mov Disord 7: 23–31Google Scholar
  29. Mena MA, Pardo B, Paino CL, G de Yebenes J (1993) Levodopa toxicity in foetal rat midbrain neurons in culture: modulation by ascorbic acid. Neuroreport 4: 438–440Google Scholar
  30. Mena MA, Casarejos MJ, De Yebenes JG (1994) Neurotrophic factors for the treatment of neurological disorders. The model of Parkinson's disease. In: Palomo T, Archer T, Beninger RJ (eds) Strategies for studying brain disorders, vol 2. Schizophrenia, movement disorders and age related cognitive disorders, chapter 15. Editorial Complutense and Farrand Press, Madrid LondonGoogle Scholar
  31. Michel PP, Hefti F (1990) Toxicity of 6-OH-DA and dopamine for dopaminergic neurons in culture. J Neurosci Res 26: 428–435Google Scholar
  32. Nieto Sampedro M, Lewis ER, Cotman CW, Manthorpe M, Skaper SD, Barbin G, Longo FM, Varon S (1982) Brain injury causes a time-dependent increase in neuronotrophic activity at the lesion site. Science 2217: 860–861Google Scholar
  33. Nieto-Sampedro M, Saneto RP, de Vellis J, Cotman CW (1985) The control of glial populations in brain: changes in astrocyte mitogenic and morphologic factors in response to injury. Brain Res 343: 320–328Google Scholar
  34. O'Malley EK, Black IB, Dreyfus CF (1991) Local support cells promote survival of substantia nigra dopaminergic neurons in culture. Exp Neurol 112: 40–48Google Scholar
  35. Ortega S, Schaeffer MT, Soderman D, DiSalvo J, Linemeyer DL, Gimenéz-Gallego G, Thomas KA (1991) Conversion of cysteine to serine residues alters the activity. Stability and heparin dependence of acidic fibroblast growth factor. J Biol Chem 266: 5842–5846Google Scholar
  36. Otto D, Unisicker K (1990) Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP treated mice. J Neurosci 10: 1912–1921Google Scholar
  37. Pardo Merino B (1993) Tesis doctoral: “Toxicidad de la L-DOPA en cultivos neuronales: Mecanismo y protección” Universidad Autonoma de Madrid, Facultad de Ciencias, MadridGoogle Scholar
  38. Pezzoli G, Fahn S, Dwork A, Truong DD, De Yebenes JG, Jackson-Lewis U, Herbert J, Cadet JL (1988) Non-chromaffin tissue plus nerve growth factor reduces experimental parkinsonism in aged rats. Brain Res 459: 398–403Google Scholar
  39. Pezzoli G, Zecchinelli A, Ricciardi R, Burke E, Fahn S, Scarlato G, Carenzi A (1991) Intraventricular infusion of epidermal growth factor restores dopaminergic pathway in hemiparkinsonian rats. Mov Disord 6: 281–287Google Scholar
  40. Seroogy KB, Gall CM (1993) Expression of neurotophins by midbrain dopaminergic neurons. Exp Neurol 124: 119–128Google Scholar
  41. Thomas KA, Gimenéz-Gallego G (1986) Fibroblast growth factors: broad spectrum mitogens with potent angiogenic activity. Trends Biochem Sci 11: 81–84Google Scholar
  42. Tooyama I, Kremer HPH, Hayden MR, Kimura H, McGeer EG, McGeer PL (1993a) Acidic and basic fibroblast growth factor-like immunoreactivity in the striatum and midbrain in Huntington's disease. Brain Res 610: 1–7Google Scholar
  43. Tooyama I, Kawamata T, Walker D, Yamada T, Hanai K, Kimura H, Iwane M, Igarashi K, McGeer EG, McGeer PL (1993b) Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinson's disease. Neurology 43: 372–376Google Scholar
  44. Unsicker K, Reichert-Preibsch H, Wewetzer K (1992) Stimulation of neuron survival by basic FGF and CNTF is a direct effect and not mediated by non-neuronal cells: evidence from single cell cultures. Dev Brain Res 65: 285–288Google Scholar
  45. Walicke PA (1988) Basic and acidic fibroblast growth factors have trophic effects on neurons from multiple CNS regions. J Neurosci 8: 2618–2622Google Scholar
  46. Walicke PA, Baird A (1988) Trophic effects of fibroblast growth factor on neural tissue. In: Gash DM, Sladek JR (eds) Transplantation into the mammalian CNS. Elsevier, New York, pp 333–338 (Prog Brain Res, vol 78)Google Scholar
  47. Wewetzer K, Janet T, Heymann D, Unsicker K (1993) Cell blotting and isoelectric focusing of neuroblastoma-derived heparin-binding neurotrophic activities: detection of basic fibroblast growth factor protein and mRNA. J Neurosci Res 36: 209–215Google Scholar
  48. Wilcox BJ, Unnerstall JR (1991) Expression of acidic fibroblst growth factor mRNA in the developing and adult rat brain. Neuron 6: 397–409Google Scholar
  49. Zazo M, Lozano RM, Ortega S, Uarela J, Diaz-Orejas R, Ramirez JM, Gimenéz-Gallego G (1992) High-level synthesis in Escherichia coli of shortened and full-length human acidic fibroblast growth factor and purification in a form stable in aqueous solutions. Gene 113: 231–238Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • M. A. Mena
    • 1
  • M. J. Casarejos
    • 1
  • G. Gimenéz-Gallego
    • 2
  • J. Garcia de Yebenes
    • 3
  1. 1.Departamento de InvestigacionCentro Ramon y CajalMadridSpain
  2. 2.Instituto CajalCSICMadridSpain
  3. 3.Servicio de NeurologiaFundacion Jimenez DiazMadridSpain

Personalised recommendations