Inflammation Research

, Volume 45, Issue 8, pp 416–423 | Cite as

Determination of bradykinin-(1–5) in inflammatory exudate by a new ELISA as a reliable indicator of bradykinin generation

  • M. Majima
  • K. Nishiyama
  • Y. Iguchi
  • K. Yao
  • M. Ogino
  • T. Ohno
  • N. Sunahara
  • K. Katoh
  • N. Tatemichi
  • Y. Takei
  • M. Katori
Original Research Papers

Abstract

We have developed an ELISA for BK-(1–5) (Arg1-Pro2-Pro3-Gly4-Phe5). In rat carrageenin-induced pleurisy, in which a plasma exudation peak was observed 5 h after carrageenin, BK levels in the exudates were negligible (<60 pg/rat). BK-(1–7) (des-Phe8-Arg9-BK) was detectable (900–400 pg/rat) over the entire course of the inflammation. However, a larger amount of BK-(1–5) was detectable in association with the increase in plasma exudation, showing a peak (8800±1200 pg/rat) 3 h after carrageenin. Bromelain (10 mg/kg, i.v.) and soy bean trypsin inhibitor (0.3 mg/rat, intra-pleural) significantly reduced BK-(1–5) levels (by 60–93%, 3, 7 and 19 h after carrageenin) and plasma exudation rates (by 61–74%, 3 and 7 h after carrageenin). Dexamethasone (0.3 mg/kg, i.p.) reduced BK-(1–5) levels (by 78%) and decreased plasma exudation (by 70%) 3 h after carrageenin. In nasal allergy patients, antigen challenge of nasal mucosa elevated BK-(1–5) levels and active kallikrein levels in nasal washes. These results verify that BK-(1–5) determined by ELISA is a good indicator for release of kinins in vivo.

Key words

Enzyme-linked immunosorbent assay (ELISA) Bradykinin-(1–5) Carageenin-induced pleurisy Nasal allergy Kinin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Majima M, Ueno A, Sunahara N, Katori M. Measurement of des-Phe8-Arg9-bradykinin by enzyme immunoassay: A useful parameter of plasma kinin release. In: Abe K, Moriya H, Fujii S, editors Kinin V, Part B. Adv Exp Med Biol Vol 247B. New York: Plenum, 1989:535–40.Google Scholar
  2. [2]
    Mccarthy DA, Potter DE, Nicolaides ED. An in vivo estimation of the potencies and half-lives of synthetic bradykinin and kallidin. J Pharmacol Exp Ther 1965;148:117–22.PubMedGoogle Scholar
  3. [3]
    Ferreira SH, Vane JR. The disappearance of bradykinin and eledoisin in the circulation and vascular beds of the cat. Br J Pharmacol 1967;30:417–24.Google Scholar
  4. [4]
    Phillips E, Webb M. A radioimmunoassay for bradykinin based on monoclonal antibodies. J Neuroimmunol 1989;23:179–85.CrossRefPubMedGoogle Scholar
  5. [5]
    Bonner G, Iwerson D, Shimamoto K. The analytical value for kinin concentration in blood depends on the antiserum used in the bradykinin radioimmunoassay. J Clin Chem Biochem 1987;25:39–43.Google Scholar
  6. [6]
    Shima C, Majima M, Katori M. A stable metabolite of bradykinin, Arg-Pro-Pro-Gly-Phe, in the degradation in human plasma. Jpn J Pharmacol 1992;60:111–9.PubMedGoogle Scholar
  7. [7]
    Majima M, Shima C, Saito M, Kuribayashi Y, Katori M, Aoyagi T. Poststatin, a novel inhibitor of bradykinin-degrading enzymes in rat urine. Eur J Pharmacol 1993;232:181–90.CrossRefPubMedGoogle Scholar
  8. [8]
    Erdos EG. Conversion of angiotensin I to angiotensin II. Am J Med 1976;60:749–59.CrossRefPubMedGoogle Scholar
  9. [9]
    Majima M, Sunahara N, Harada Y, Katori M. Detection of the degradation products of bradykinin by enzyme immunoassays as markers for the release of kinin in vivo. Biochem Pharmacol 1993;45:559–67.CrossRefPubMedGoogle Scholar
  10. [10]
    Majima M, Katori M, Hanazuka M, Mizogami S, Nakano T, Nakao Y, et al. Suppression of rat deoxycorticosterone-salt hypertension by kallikrein-kinin system. Hypertension 1991; 17:806–13.PubMedGoogle Scholar
  11. [11]
    Katori M, Majima M, Odoi-Adome R, Sunahara N, Uchida Y. Evidence for the involvement of a plasma kallikrein-kinin system in the immediate hypotension produced by endotoxin in anaesthetized rats. Br J Pharmacol 1989;78:1383–91.Google Scholar
  12. [12]
    Uchida Y, Tanaka K, Harada Y, Ueno A, Katori M. Activation of plasma kallikrein-kinin system and its significant role in rat carrageenan-induced pleurisy. Inflammation 1983;7:121–31.CrossRefPubMedGoogle Scholar
  13. [13]
    Kauker ML, Crofton JT, Share L, Nasjletti A. Role of vasopressin in regulation of renal kinin exretion in Long-Evans and diabetes insipidus rats. J Clin Invest 1984;73:824–31.PubMedGoogle Scholar
  14. [14]
    Oh-ishi S, Katori M. Fluorometric assay method for plasma prekallikrein using peptidylmethyl-coumarylamide as a substrate. Thromb Res 1979;14:665–72.CrossRefPubMedGoogle Scholar
  15. [15]
    Oh-ishi S, Uchida Y, Ueno A, Katori M. Bromelain, a thioprotease from pineapple stem, depletes high-molecular-weight kininogen by activation of Hageman factor (factor XII). Thromb Res 1979;14:665–72.CrossRefPubMedGoogle Scholar
  16. [16]
    Naclerio RM, Meier HL, Kagey-Sobotka A, Adkinson NF, Meyers DA, Norman PS, et al. Mediator release after nasal airway challenge with allergen. Am Rev Resp Dis 1983;128:597–602.Google Scholar
  17. [17]
    Okuda M. Nasal provocation testing. Am J Rhinol 1989;3:83–92.Google Scholar
  18. [18]
    Adachi K, Majima M, Katori M, Nishijima M. Oxytocin-induced natriuresis mediated by the renal kallikrein-kinin system in anesthetized male rats. Jpn J Pharmacol 1995;67:243–52.PubMedGoogle Scholar
  19. [19]
    Katori M, Harada Y, Ueno A, Majima M, Oda T, Kawamura M. Modulation of plasma exudation by PGE2 and that of leukocyte migration by LTB4 in inflammatory models. Dermatologia 1989;179:60–3.Google Scholar
  20. [20]
    Katori M, Majima M, Harada Y, Ueno A. A significant role of plasma kallikrein-kinin system in plasma exudation of rat carrageenin-induced pleurisy. In: Abe K, Moriya H, Fujii S, editors. Adv Exp Med Biol Vol 247A. New York: Plenum, 1989:137–44.Google Scholar
  21. [21]
    Baumgarten CR, Togias AG, Naclerio RM, Lichtenstein LM, Norman PS, Proud D. Influx of kininogens into nasal secretions after antigen challenge of allergic individuals. J Clin Invest 1983;72:1678–85.PubMedGoogle Scholar
  22. [22]
    Proud D, Togias A, Nacrerio RM, Crush SA, Norman PS, Lichtenstein LM. Kinins are generatedin vivo following nasal airway challenge of allergic individuals with allergen. J Clin Invest 1983;72:1678–85.PubMedGoogle Scholar
  23. [23]
    Majima M, Kuribayashi Y, Ikeda Y, Adachi K, Kato H, Katori M, et al. Diuretic and natriuretic effect of ebelactone B in anesthetized rats by inhibition of a urinary carboxypeptidase Y-like kininase. Jpn J Pharmacol 1994;65:79–82.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • M. Majima
    • 1
  • K. Nishiyama
    • 2
  • Y. Iguchi
    • 2
  • K. Yao
    • 2
  • M. Ogino
    • 1
  • T. Ohno
    • 1
  • N. Sunahara
    • 3
  • K. Katoh
    • 3
  • N. Tatemichi
    • 4
  • Y. Takei
    • 4
  • M. Katori
    • 1
  1. 1.Department of PharmacologyKitasato University School of MedicineSagamihara, KanagawaJapan
  2. 2.Department of OtolaryngologyKitasato University School of MedicineSagamihara, KanagawaJapan
  3. 3.Dainippon Pharmaceutical Co. Ltd.Enoki, OsakaJapan
  4. 4.Department of Clinical ChemistryMaruko Pharmaceutical Co., Ltd.Kasugai, AichiJapan

Personalised recommendations