Advertisement

Computing

, Volume 20, Issue 2, pp 95–108 | Cite as

Some filing schemes based on finite groups of automorphisms

  • Th. Beth
  • K. S. Vijayan
Article

Abstract

From some families of partialt-designs which have automorphism groups of high transitivity new algebro-algorithmical filing systems permittingt-queries are constructed. Due to the computational properties of the groups used, new bounds for the retrieval times are obtained in several cases.

Keywords

Computational Mathematic Automorphism Group Finite Group Filing System Retrieval Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Speicherplatzorganisation mit Hilfe endlicher Automorphismengruppen

Zusammenfassung

Ausgehend voneinigen Familien partiellert-designs, die Automorphismengruppen hoher Transitivität besitzen, werden neue algebro-arithmetische Adressierverfahren fürt-fache Abfragen entwickelt. Aus der arithmetischen Struktur der zugrundeliegenden Gruppen ergeben sich neue Schranken für die Abrufzeiten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abraham, C. T., Gosh, S. P., Ray-Chaudhuri, D. K.: File organisations based on finite Geometries. Research Report RC 1459, IBM Watson Research Centre, Yorktown Heights, N.Y., 1965.Google Scholar
  2. [2]
    Alltop, W. O.: An infinite class of 5-designs. Journal Comb. Th.A 12, 390–395 (1972).CrossRefGoogle Scholar
  3. [3]
    Beth, Th.: Algebraische Auflösungsalgorithmen für einige unendliche Familien von 3-Designs. Le Matematiche29, Fasc. 1 (1974).Google Scholar
  4. [4]
    Bose, R. C.: Mathematical theory of the symmetrical factorial designs. Sankhya8, 107–166 (1947).Google Scholar
  5. [5]
    Bose, R. C., Koch, G. G.: The design of combinatorial information retrieval systems for files with multiple valued attributes. SIAM J. Appl. Math.17 (1969).Google Scholar
  6. [6]
    Bucholz, W.: File organisation and addressing. IBM Systems Journal2, 86–111 (1963).Google Scholar
  7. [7]
    Carmichael, R. D.: Introduction to the theory of groups of finite order. Dover 1956.Google Scholar
  8. [8]
    Ray-Chaudhuri, D. K.: Combinatorial retrieval systems for files. SIAM Journal Appl. Math.16 (1968).Google Scholar
  9. [9]
    Reichertz, P. L.: Medizinische Informatik: Aufgaben, Wege, Bedeutung. Verhandlung deutscher Naturforscher und Ärzte1972, 106–120.Google Scholar
  10. [10]
    Sumiyasu Yamamoto, Hideto Ikeda, Shinsei Shige-Eda, Kazuhiko Ushio, Noboru Hamada: Design of a new balanced file organisation scheme with the least redundancy. Information and Control28, 156–175 (1975).CrossRefGoogle Scholar
  11. [11]
    van Lint, J. H.: Coding theory (Lecture notes in mathematics, Vol. 201.) Berlin-Heidelberg-New York: Springer 1971.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Th. Beth
    • 1
  • K. S. Vijayan
    • 1
  1. 1.Institut für Mathematische Maschinen und Datenverarbeitung IUniversität Erlangen-NürnbergErlangenFederal Republic of Germany

Personalised recommendations