Skip to main content

Algorithm 37 Algorithm for the solution of the 0–1 single knapsack problem

Algorithmus 37. Algorithmus für die Lösung des „0–1 single Knapsack Problems”


The FORTRAN implementation of an efficient algorithm which solves the 0–1 single knapsack problem is given. Computational results are presented, showing the proposed method to be generally superior to the best known algorithms.


Für das „0–1 single Knapsack Problem” wird eine FORTRAN-Implementierung eines wirkungsvollen Lösungsverfahrens angegeben. Die angeführten Rechenergebnisse zeigen, daß die vorgeschlagene Methode den derzeit besten bekannten Algorithmen überlegen ist.

This is a preview of subscription content, access via your institution.


  1. Horowitz, E., Sahni, S.: Computing Partitions with Applications to the Knapsack Problem. Journal of ACM21, 277–292 (1974).

    Google Scholar 

  2. Ingargiola, G. P., Korsh, J. F.: Reduction Algorithm for Zero-One Single Knapsack Problems. Management Science20, 460–463 (1973).

    Google Scholar 

  3. Martello, S., Toth, P.: An Upper Bound for the Zero-One Knapsack Problem and a Branch and Bound Algorithm. European Journal of Operational Research1, 169–175 (1977).

    Google Scholar 

  4. Martello, S., Toth, P.: A Computational Study on Large-Size Unidimensional Knapsack Problems. Presented at the TIMS/ORSA Joint National Meeting, San Francisco (1977).

  5. Nauss, R. M.: An Efficient Algorithm for the 0–1 Knapsack Problem. Management Science23, 27–31 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martello, S., Toth, P. Algorithm 37 Algorithm for the solution of the 0–1 single knapsack problem. Computing 21, 81–86 (1978).

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI:


  • Computational Mathematic
  • Computational Result
  • Efficient Algorithm
  • Knapsack Problem
  • FORTRAN Implementation