, Volume 110, Issue 3, pp 265–272 | Cite as

5-HT2 and D2 dopamine receptor occupancy in the living human brain

A PET study with risperidone
  • Svante Nyberg
  • Lars Farde
  • Lars Eriksson
  • Christer Halldin
  • Bo Eriksson
Original Investigations


It has been suggested that a combined blockade of 5-HT2 and D2 dopamine receptors may be superior to D2 dopamine antagonists alone in the treatment of schizophrenia. Risperidone, which has a high affinity for 5-HT2 and D2 dopamine receptors in vitro, is a new antipsychotic drug that has been developed according to this hypothesis. The aim of this study was to examine if risperidone indeed induces 5-HT2 and D2 dopamine receptor occupancy in vivo in humans. Central receptor occupancy was examined by positron emission tomography (PET) in three healthy men after oral administration of 1 mg risperidone. [11C]N-methylspiperone ([11C]NMSP) was used as a radioligand for determination of 5-HT2 receptor occupancy in the neocortex. Both an equilibrium ratio analysis and a kinetic three-compartmental analysis indicated a 5-HT2 receptor occupancy about 60%. [11C]raclopride was used as a radioligand for determination of D2 dopamine receptor occupancy in the striatum and the calculated occupancy was about 50%. This is the first quantitative determination of 5-HT2 receptor occupancy induced by an antipsychotic drug in the living human brain. The results indicate that 5-HT2 receptor occupancy should be very high at the dose level of 4–10 mg risperidone daily, as suggested for clinical use. Risperidone is thus an appropriate compound for clinical evaluation of the benefit of combined 5-HT2 and D2 dopamine receptor blockade in the treatment of schizophrenia.

Key words

PET Positron emission tomography Human brain Dopamine receptors Serotonin receptors Risperidone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balsara JJ, Jadhav JH, Chandorkar AG (1979) Effect of drugs influencing central serotonergic mechanisms on haloperidol-induced catalepsy. Psychopharmacology 62:67–69Google Scholar
  2. Barnes TRE (1989) A rating scale for drug-induced akathisia. Br J Psychiatry 154:672–676Google Scholar
  3. Baron JC, Martinot JL, Cambon H, Boulenger JP, Poirier MF, Caillard V, Blin J, Huret JD, Loc'h C, Maziere B (1989) Striatal dopamine receptor occupancy during and following withdrawal from neuroleptic treatment: correlative evaluation by positron emission tomography and plasma prolactin levels. Psychopharmacology 99:463–472Google Scholar
  4. Bergström M, Boëthius J, Eriksson L, Greitz T, Ribbe T, Widén L (1981) Head fixation device for reproducible position alignment in transmission CT and positron emission tomography. J Comput Assist Tomogr 5:136–141Google Scholar
  5. Bleich A, Brown S-L, Kahn R, Praag HM van (1988) The role of serotonin in schizophrenia. Schizophr Bull 14:297–315Google Scholar
  6. Blin J, Pappata S, Kiyosawa M, Crouzel C, Baron JC (1988) [18F]setoperone: a new high-affinity ligand for positron emission tomography study of the serotonin-2 receptors in baboon brain in vivo. Eur J Pharmacol 147:73–82Google Scholar
  7. Blin J, Sette G, Fiorelli M, Bletry O, Elghozi JL, Crozel C, Baron JC (1990) A method for the in vivo investigation of the serotonergic 5-HT2 receptors in the human cerebral cortex using positron emission tomography and18F-labeled setoperone. J Neurochem 54:1744–1754Google Scholar
  8. Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144Google Scholar
  9. Ceulemans DLS, Gelders YG, Hoppenbrouwers M-LJA, Reyntjens AJM, Janssen PAJ (1985) Effect of serotonin antagonism in schizophrenia: a pilot study with setoperone. Psychopharmacology 85:329–332Google Scholar
  10. Claus A, Bollen J, De Cuyper H, Eneman M, Malfroid M, Peuskens J, Heylen S (1992) Risperidone versus haloperidol in the treatment of chronic schizophrenic patients: a multicenter doubleblind comparative study. Acta Psychiatr Scand 85:295–305Google Scholar
  11. Costall B, Fortune DH, Naylor RJ, Marsden CD, Pycock C (1975) Serotonergic involvement with neuroleptic catalepsy. Neuropharmacology 14:859–868Google Scholar
  12. Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483Google Scholar
  13. Crouzel C, Guillaume M, Barré L, Lemaire C, Piké VW (1992) Ligands and tracers for PET studies on the 5HT system — current status. J Nucl Med Biol 19:857–870Google Scholar
  14. Csernansky JG, Poscher M, Faull KF (1990) Serotonin in schizophrenia. In: Coccaro EF, Murphy DL (eds) Serotonin in major psychiatric disorders. American Psychiatric Press, Washington, DC, pp 209–230Google Scholar
  15. Dannals RF, Ravert HT, Wilson AA, Wagner Jr HN (1986) An improved synthesis of (3-N-11C]Methyl)spiperone. Appl Radiat Isot 37:433–434Google Scholar
  16. Eriksson L, Holte S, Bohm C, Kesselberg M, Hovander B (1988) Automatic blood sampling systems for positron emission tomography. IEEE Trans Nucl Sci 35:703–707Google Scholar
  17. Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedström C-G, Litton J-E, Sedvall G (1985) Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tmography. Proc Natl Acad Sci USA 82:3863–3867Google Scholar
  18. Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231:258–261Google Scholar
  19. Farde L, Pauli S, Hall H, Stone-Elander S, Eriksson L, Halldin C, Högberg T, Nilsson L, Sjögren I (1988) Stereoselective binding for11C-raclopride in living human brain — a search for extrastriatal central D2-dopamine receptors by PET. Psychopharmacology 94:471–478Google Scholar
  20. Farde L, Eriksson L, Blomquist G, Halldin C (1989) Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET — A coparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708Google Scholar
  21. Frost JJ, Smith AC, Kuhar MJ, Dannals RF, Wagner Jr HN (1987) In vivo binding of3H-N-methylspiperone to dopamine and serotonin receptors. Life Sci 40:987–995Google Scholar
  22. Hall H, Farde L, Sedvall G (1988) Human dopamine receptor subtypes — in vitro binding analysis using3H-SCH 23390 and3H-raclopride. J Neural Transm 73:7–21Google Scholar
  23. Halldin C, Farde L, Högberg T, Hall H, Ström P, Ohlberger A, Solin O (1991) A comparative PET-study of five carbon-11 or fluorine-18 labelled salicylamides. Preparation and in vitro dopamine D-2 binding. Nucl Med Biol 18:871–881Google Scholar
  24. Hicks PB (1990) The effect of serotonergic agents on haloperidolinduced catalepsy. Life Sci 47:1609–1615Google Scholar
  25. Hoyer D, Pazos A, Probst A, Palacios J (1986) Serotonin receptors in the human brain. II: Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res 376:97–107Google Scholar
  26. Janssen PAJ, Niemegeers CJE, Awouters F, Schellekens KHL, Megens AAHP, Meert TF (1988) Pharmacology of risperidone (R 64 766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J Pharmacol Exp Ther 244:685–693Google Scholar
  27. Korsgaard S, Gerlach J, Christenson E (1985) Behavioural aspects of serotonin-dopamine interaction in the monkey. Eur J Pharmacol 118:245–252Google Scholar
  28. Kostowski W, Gumulka W, Czlonkowski A (1972) Reduced cataleptogenic effects of some neuroleptics in rats with lesioned midbrain raphe and treated withp-chlorophenylalanine. Brain Res 48:443–446Google Scholar
  29. Leysen JE, Gommeren W, Eens A, de Chaffoy de Courcelles D, Stoof JC, Janssen PAJ (1988) Biochemical profile of risperidone, a new antipsychotic. J Pharmocol Exp Ther 247:661–670Google Scholar
  30. Lidow MS, Goldman-Rakic PS, Rakic P, Innis RB (1989) Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride. Proc Natl Acad Sci USA 86:6412–6416Google Scholar
  31. Litton JE, Holte S, Eriksson L (1990) Evaluation of the Karolinska new positron camerea system; the Scanditronix PC2048-15B. IEEE Trans Nucl Sci 37:743–748Google Scholar
  32. Lyon R, Titeler M, Frost J, Whitehouse P, Wong D, Wagner Jr H, Dannals R, Links J, Kuhar M (1986) [3H]3-N-Methylspiperone labels D2 dopamine in basal ganglia and S2 serotonin receptors in cerebral cortex. J Neurosci 6:2941–2949Google Scholar
  33. Mahgoub A, Idle JR, Dring LG, Lancaser R, Smith RL (1977) Polymorphic hydroxylation of debrisoquine in man. Lancet September 17:584–586Google Scholar
  34. Mannens G, Huang M-L, Meuldermans W, Van Peer A, Hendrickx J, Verboven P, Mostmans E, Hurkmans R, Woestenborghs R, Cornelissen L, Lorreyne W, Heykants J: Absorption, excretion and metabolism of risperidone in volunteers after a single oral dose of 1 mg. Janssen Pharmaceutica, June 1990; Clinical Research Report R 64 766/25Google Scholar
  35. Martres M-P, Bouthenet M-L, Sales N, Sokoloff P, Schwartz J-C (1985) Widespread distribution of brain dopamine receptors evidenced with [125]iodosulpiride, a highly selective ligand. Science 228:752–755Google Scholar
  36. Mintun M, Raichle M, Kilbourn M, Wooten G, Welch M (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15:217–227Google Scholar
  37. Mizuki Y, Kajamura N, Imai T, Suetsugi M, Kai S, Kaneyuki H, Yamada M (1990) Effects of mianserin on negative symptoms in schizophrenia. Int Clin Psychopharmacology 5:83–95Google Scholar
  38. Pazos A, Probst A, Palacios J (1987) Serotonin receptors in the human brain. IV: Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21:123–139Google Scholar
  39. Peroutka SJ (1990) 5-Hydroxytryptamine receptor subtypes. Pharmacol Toxicol 67:373–383Google Scholar
  40. Peroutka SJ, Snyder SH (1980) Relationship of neuroleptic drug effects at brain dopamine, serotonin,α-adrenergic, and histamine receptors to clinical potency. Am J Psychiatry 137:1518–1522Google Scholar
  41. Reyntjens A, Gelders YG, Hoppenbrouwers M-LJA, Vanden Bussche G (1986) Thymostenic effects of ritanserin (R 55667), a centrally acting serotonin-S2 receptor blocker. Drug Dev Res 8:205–211Google Scholar
  42. Schotte A, Maloteaux JM, Laduron PM (1983) Characterization and regional distribution of serotonin S2-receptors in human brain. Brain Res 276:231–235Google Scholar
  43. Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719Google Scholar
  44. Silver H, Blacker M, Weller MPI, Lerer B (1989) Treatment of chronic schizophrenia with cyproheptadine. Biol Psychiatry 25:502–504Google Scholar
  45. Simpson GM, Angus JWS (1970) A rating scale for extrapyramidal side effects. Acta Psychiatr Scand 212:11–19Google Scholar
  46. Smith M, Wolf AP, Brodie JD, Arnett CD, Brouche F, Shiuhe C-Y, Fowler JS, Russel JAG, MacGregor RR, Wolkin A, Angrist B, Rotrosen J, Peselow E (1988) Serial [18F]N-Methylspiroperidol PET studies to measure changes in antipsychotic drug D-2 receptor occupancy in schizophrenic patients. Biol Psychiatry 23:653–663Google Scholar
  47. Sokoloff L, Reivish M, Kennedy C, Des Rosiers M, Patlak C, Pettigrew M, Sakurada I, Shinohara M (1977) The deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916Google Scholar
  48. Steiner E, Bertilsson L, Säwe J, Bertling I, Sjökvist F (1988) Polymorphic debrisoquine hydroxylation in 757 Swedish subjects. Clin Pharmacol Ther 44:431–435Google Scholar
  49. Swahn C-G, Farde L, Halldin C, Sedvall G (1992) Ligand metabolites in plasma during PET-studies with the11C-labelled dopamine antagonists, raclopride, SCH 23390 and N-methylspiroperidol. Hum Psychopharmacol 7:97–103Google Scholar
  50. Swart JAA, von der Werf JF, Wiegman T, Paans AMJ, Vaalburg W, Korf J (1990) In vivo binding of spiperone and N-methylspiperone to dopaminergic and serotonergic sites in the rat brain: multiple modeling and implications for PET scanning. J Cereb Blood Flow Metab 10:297–306Google Scholar
  51. van Kammen DP, Gelernter J (1987) Biochemical instability in schizophrenia II: The serotonin and γ-aminobutyric acid systems. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 753–758Google Scholar
  52. van Rossum JM (1966) The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther 160:492–494Google Scholar
  53. Wagner Jr HN, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221:1264–1266Google Scholar
  54. Woestenborghs R, Geuens I, Van Roosbroeck D, Cornelissen L, Van Rompaey F, Knaeps F, Heykants J: Determination of risperidone and 9-hydroxyrisperidone (R 76477) in plasma by radioimmunoassay. Janssen Research Foundation, August 1990; Preclinical Research Report R 64766/24 (N 76562)Google Scholar
  55. Wong DF, Wagner Jr HN, Dannals RF, Links JM, Frost JJ, Ravert HT, Wilson AA, Rosenbaum AE, Gjedde A, Douglas KH, Petronis JD, Folstein MF, Toung JKT, Burns HD, Kuhar MJ (1984) Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226:1393–1396Google Scholar
  56. Wong DF, Gjedde A, Wagner Jr HN (1986) Quantification of neuroreceptors in the living human brain. I. Irreversible binding of ligands. J Cereb Blood Flow Metab 6:137–146Google Scholar
  57. Woolley DW, Shaw E (1954) A biochemical and pharmacological suggestion about certain mental disorders. Proc Natl Acad Sci USA 40:228–231Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Svante Nyberg
    • 1
  • Lars Farde
    • 1
  • Lars Eriksson
    • 2
  • Christer Halldin
    • 1
  • Bo Eriksson
    • 3
  1. 1.Department of Psychiatry and PsychologyKarolinska HospitalStockholmSweden
  2. 2.Department of NeuroradiologyKarolinska HospitalStockholmSweden
  3. 3.Janssen Pharma ABSweden

Personalised recommendations