, Volume 31, Issue 4, pp 287–303 | Cite as

The asymptotic behaviour of a distributive sorting method

  • W. B. van Dam
  • J. B. G. Frenk
  • A. H. G. Rinnooy Kan


In the distributive sorting method of Dobosiewicz, both the interval between the minimum and the median of the numbers to be sorted and the interval between the median and the maximum are partitioned inton/2 subintervals of equal length; the procedure is then applied recursively on each subinterval containing more than three numbers. We refine and extend previous analyses of this method, e.g., by establishing its asymptotic linear behaviour under various probabilistic assumptions.

AMS Subject Classifications

68 E 05 

Key words

Sorting probabilistic analysis 

Zum asymptotischen Verhalten eines distributiven Suchverfahrens


Bei dem distributiven Sortierverfahren von Dobosiewicz wird sowohl das Intervall zwischen Minimum und Median als auch das Intervall zwischen Median und Maximum inn/2 Teilintervalle gleicher Länge zerlegt; die Prozedur wird dann rekursiv in jedem, mindestens vier Zahlen enthaltenden Teilintervall angesetzt. In dieser Arbeit werden einige Aspekte des Verfahrens verfeinert und erweitert. Insbesondere wird das asymptotisch lineare Verhalten unter verschiedene Wahrscheinlichkeits-Annahmen untersucht.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akl, S. G., Meijer, H.: The design and analysis of a new hybrid sorting algorithm. Information Processing Lett.10, 213–218 (1980).Google Scholar
  2. [2]
    Billingsley, P.: Probability and measure. New York: Wiley 1979.Google Scholar
  3. [3]
    Breiman, L.: Probability. Reading, Mass.: Addison-Wesley 1968.Google Scholar
  4. [4]
    Devroye, L., Klincsek, T.: Average time behavior of distributive sorting algorithms. Computing26, 1–7 (1981).Google Scholar
  5. [5]
    Dobosiewicz, W.: Sorting by distributive partitioning. Information Processing Lett.7, 1–6 (1978).Google Scholar
  6. [6]
    Feller, W.: An introduction to probability theory and its applications, Vol. I. New York: Wiley 1970.Google Scholar
  7. [7]
    Kawata, T.: Fourier analysis in probability theory. New York: Academic Press 1972.Google Scholar
  8. [8]
    Knuth, D. E.: The art of computer programming. Reading, Mass.: Addison-Wesley 1973.Google Scholar
  9. [9]
    Van der Nat, M.: A fast sorting algorithm, a hybrid of distributive and merge sorting. Information Processing Lett.10, 163–167 (1980).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • W. B. van Dam
    • 1
  • J. B. G. Frenk
    • 2
  • A. H. G. Rinnooy Kan
    • 3
  1. 1.Department of Industrial Engineering and Management ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Department of Industrial Engineering and Operations ResearchUniversity of CaliforniaBerkeleyUSA
  3. 3.Econometric InstituteErasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations