Radiophysics and Quantum Electronics

, Volume 39, Issue 11–12, pp 990–994 | Cite as

Solar image recovery with a weak filling of the spectral plane by the method of projections onto convex sets

  • B. V. Krissinel
  • S. M. Kuznetsova
  • A. G. Obukhov
  • G. Ya. Smol'kov
Article

Abstract

This paper is devoted to the problem of solar image recovery in synthesizing radio brightness maps in the case of an incomplete filling of the spectral region (the Fourier data are bounded by a cone with an angle much smaller than 180 deg.) The image was recovered by the method of projection onto closed convex sets (PCCS). Brief theoretical postulates which formed the basis for this method are presented. A comparative characteristic with the CLEAN method is given. The results of using this method for the model data and real data (recovery of the solar radio image obtained in the knife-edge beams of the SSRT) are presented.

Keywords

Fourier Real Data Model Data Spectral Region Quantum Electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. N. Bracewell,Aust. J. Phys.,9, 198 (1956).Google Scholar
  2. 2.
    R. N. Bracewell and A. C. Riddle,Astrophys. J.,150, 427 (1967).Google Scholar
  3. 3.
    R. H. Beits, K. L. Garden, and T. M. Peters,IEEE Trans.,71, No. 3, 84 (1983).Google Scholar
  4. 4.
    G. I. Vasilenko and A. M. Taratorin,Image Recovery [in Russian], Radio i Svyaz', Moscow (1986).Google Scholar
  5. 5.
    P. Barry and B. P. Medoff, in:Image Recovery: Theory and Application (H. Stark, ed.), Academic Press, New York (1992).Google Scholar
  6. 6.
    K. M. Hanson, in:Image Recovery: Theory and Application (H. Stark, ed.), Academic Press, New York (1992).Google Scholar
  7. 7.
    D. C. Youla, in:Image Recovery: Theory and Application (H. Stark, ed.), Academic Press, New York (1992).Google Scholar
  8. 8.
    D. C. Youla,IEEE Trans.,MI-I, No. 2, 81 (1982).Google Scholar
  9. 9.
    M. I. Sezann and H. Stark, in:Image Recovery: Theory and Application (H. Stark, ed.), Academic Press, New York (1992).Google Scholar
  10. 10.
    F. Natterer,The Mathematics of Computerized Tomography, Wiley, New York (1986).Google Scholar
  11. 11.
    G. Ya. Smolkov, T. A. Treskov, B. B. Krissinel, and N. N. Potapov,Issled. Geomagn. Aéron. Fiz. Sol., issue 64, 130 (1983).Google Scholar
  12. 12.
    A. L. Balandin, S. M. Kuznetsova, A. G. Obukhov, and G. Ya. Smolkov,Issled. Geomagn. Aéron. Fiz. Sol., issue 95, 3 (1991).Google Scholar
  13. 13.
    L. M. Bergman,Dok. Akad. Nauk SSSR,162, No. 3, 487 (1965).Google Scholar
  14. 14.
    L. G. Gubin, B. T. Polyak, and E. V. Raik,Zh. Vyssh. Mat. Mat. Fiz., No. 7, 1 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • B. V. Krissinel
    • 1
  • S. M. Kuznetsova
    • 1
  • A. G. Obukhov
    • 1
  • G. Ya. Smol'kov
    • 1
  1. 1.Institute of Solar-Terrestrial PhysicsSiberian Branch of Russian Academy of SciencesIrkutsk

Personalised recommendations