Radiophysics and Quantum Electronics

, Volume 39, Issue 11–12, pp 971–977 | Cite as

Dynamics of energetic electrons in a solar flare loop and the flattening of its millimeter-wavelength radio emission spectrum

  • V. F. Mel'nikov
  • A. Magun
Article

Abstract

A comparison of predictions by the dynamical trap- plus- precipitation model of broadband microwave bursts and the empirical data on intensive solar flares at centimeter and millimeter wavelengths is presented. The main finding of the data analysis and model calculations is the spectral flattening throughout the entire burst duration. This effect occurs always in the decay phase of the flux peaks at frequencies well above the spectrum peak frequency and is independent of the burst duration. It was found that in some bursts the flux maxima at the higher frequencies are delayed compared to the maxima at the lower frequencies. These effects can be interpreted as being a consequence of the hardening of the electron energy spectrum in the decay phase of the burst.

Keywords

Flare Peak Frequency Solar Flare Radio Emission Energetic Electron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.-L. Klein, G. Trottet, and A. Magun,Sol. Phys.,104, 243 (1986).Google Scholar
  2. 2.
    V. F. Mel'nikov, Ph.D. Theses, Radiophysical Research Institute of Nizhny Novgorod (1990).Google Scholar
  3. 3.
    G. Bruggmann, N. Vilmer, K.-L. Klein, and S. R. Kane,Sol. Phys.,149, 171 (1994).Google Scholar
  4. 4.
    V. F. Mel'nikov,Izv. Vyssh. Uchebn. Zaved., Radiofiz.,37, 856 (1994).Google Scholar
  5. 5.
    N. Vilmer, G. Trottet, A. L. McKinnon,Astron. Astrophys.,156, 64 (1986).Google Scholar
  6. 6.
    N. Vilmer, S. R. Kane, and G. Trottet,Astron. Astrophys.,108, 306 (1982).Google Scholar
  7. 7.
    A. L. McKinnon,Astron. Astrophys.,163, 239 (1986).Google Scholar
  8. 8.
    V. F. Mel'nikov,Izv. Vyssh. Uchebn. Zaved., Radiofiz. [in press].Google Scholar
  9. 9.
    A. L. McKinnon, J. C. Brown, G. Trottet, and N. Vilmer,Astron. Astrophys.,119, 297 (1983).Google Scholar
  10. 10.
    R. Herrmann, A. Magun, J. E. R. Costa, E. Correira, and P. Kaufmann,Sol. Phys.,42, 157 (1992).Google Scholar
  11. 11.
    I. M. Chertok, V. V. Fomichev, R. V. Gorgutsa, J. Hildebrandt, A. Krüger, A. Magun, and V. V. Zaitsev,Sol. Phys.,160, 181 (1995).Google Scholar
  12. 12.
    M. R. Kundu, S. M. White, N. Gopalswamy, and J. Lim,Astrophys. J., Suppl. Ser.,90, 599 (1994).Google Scholar
  13. 13.
    A. V. Stepanov, S. Urpo, and V. V. Zaitsev,Sol. Phys.,140, 139 (1992).Google Scholar
  14. 14.
    R. Ramaty,Astrophys. J.,158, 753 (1969).Google Scholar
  15. 15.
    T. Takakura,Sol. Phys.,26, 151 (1972).Google Scholar
  16. 16.
    J. A. Dulk and K. A. Marsh,Astrophys. J.,259, 350 (1982).Google Scholar
  17. 17.
    V. F. Mel'nikov and A. Magun,Sol. Phys. (1997) [in press].Google Scholar
  18. 18.
    T. Bai and B. Dennis,Astrophys. J.,292, 699 (1985).Google Scholar
  19. 19.
    E. Hulot et al.,Astron. Astrophys.,256, 273 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. F. Mel'nikov
    • 1
    • 2
  • A. Magun
    • 1
    • 2
  1. 1.Radiophysical Research InstituteNizhny NovgorodRussia
  2. 2.Institute of Applied PhysicsBern UniversitySwitzerland

Personalised recommendations