Skip to main content
Log in

An a priori estimate for the truncation error of a continued fraction expansion to the Gaussian error function

Eine a priori Abschätzung des Abbruchfehlers einer Kettenbruchentwicklung zum Gaußschen Fehlerintegral

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The truncation error for a continued fraction to the Gaussian error function is estimated. The precision of the obtained bounds is verified by comparison with the exact values. The related precision as well as the number of needed iterations are discussed in several ways.

Zusammenfassung

Der Abbruchfehler für eine Kettenbruchentwicklung zum Gaußschen Fehlerintegral wird beidseitig abgeschätzt. Die Güte der Abschätzungen wird durch Vergleich mit den exakten Werten geprüft. Die zugehörige erreichbare Genauigkeit sowie die Anzahl der benötigten Iterationen werden in verschiedener Weise diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bateman, H., Erdelyi, A.: Higher transcendental functions, Vol. 2, p. 136. New York: McGraw-Hill 1953.

    Google Scholar 

  2. Clenshaw, C. F., Miller, G. F., Woodger, M.: Algorithms for special functions I. Num. Math.4, 403–419 (1963).

    Google Scholar 

  3. Van der Cruyssen, P.: A reformulation of Olver's algorithm for the numerical solution of secondorder linear difference equations. Num. Math.32, 159–166 (1979).

    Google Scholar 

  4. Field, D. A.: Error bounds for continued fractionsK(1/b n ). Num. Math.29, 261–267 (1978).

    Google Scholar 

  5. Field, D. A., Jones, W. B.: A priori estimates for truncation error of continued fractionsK(1/b n ). Num. Math.19, 283–302 (1972).

    Google Scholar 

  6. Gargantini, I., Henrici, P.: A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp.21, 18–29 (1967).

    Google Scholar 

  7. Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Review,9, 24–82 (1967).

    Google Scholar 

  8. Gragg, W.: Truncation error bounds forg-fractions. Num. Math.11, 370–379 (1968).

    Google Scholar 

  9. Hastings, C., Jr.: Approximations for digital computers, pp. 185, 191. Princeton, N. J. Princeton University Press 1955.

    Google Scholar 

  10. Henrici, P., Pfluger, P.: Truncation error estimates for Stieltjes fractions. Num. Math.9, 120–138 (1966).

    Google Scholar 

  11. Jones, W. B.: Analysis of truncation error of approximations based on the Padé table and continued fractions. Rocky Mountains J. of Math.4, 241–250 (1974).

    Google Scholar 

  12. Jones, W. B., Snell, R. I.: Truncation error bounds for continued fractions. SIAM J. Num. Anal.6, 210–221 (1971).

    Google Scholar 

  13. Jones, W. B., Thron, W. J.: A posteriori bounds for the truncation error of continued fractions. SIAM J. Num. Anal.8, 693–705 (1971).

    Google Scholar 

  14. Jones, W. B., Thron, W. J.: Truncation error analysis by means of approximant systems and inclusions regions. Num. Math.26, 117–154 (1976).

    Google Scholar 

  15. Khintchine, A.: Kettenbrüche. Leipzig: B. G. Teubner 1956.

    Google Scholar 

  16. Khovanskii, A. N.: The application of continued fractions and their generalizations to problems in approximation theory, Groningen: P. Noordhoff 1962.

    Google Scholar 

  17. Luke, Y. L.: Mathematical functions and their approximations, p. 140. New York: Academic Press 1953.

    Google Scholar 

  18. Olver, F. J. W.: Error analysis of Millers recurrence algorithm. Math. Comp.18, 65–74 (1964).

    Google Scholar 

  19. Perron, O.: Die Lehre von den Kettenbrüchen. Stuttgart: Teubner 1954 (Band I), 1957 (Band II).

    Google Scholar 

  20. Rosser B. J.: Theory and application of Theory and application of\(\int\limits_0^z {\exp ( - x^2 )} dx and \int\limits_0^z {\exp ( - p^2 y^2 )dy\int\limits_0^y {\exp ( - x^2 )dx} } \). New York: Mapleton House Publishers 1948.

    Google Scholar 

  21. Schonfelder, J. L.: Chebyshev expansions for the error and related functions. Math. Comp.32, 1232–1240 (1978).

    Google Scholar 

  22. Shepherd, M. M., Laframboise, J. G.: Chebyshev approximation of (1+2x) exp (x 2) erfc x. Math. Comp.36, 249–253 (1981).

    Google Scholar 

  23. Szegö, G.: Orthogonal polynomials. Am. Math. Soc. Coll. Publ. (New York)23 (1959).

  24. Wall, H. S.: Analytic theory of continued fractions. New York: van Nostrand 1948.

    Google Scholar 

  25. van der Cruyssen, P.: A continued fraction algorithm. Numer. Math.37, 149–156 (1981).

    Google Scholar 

  26. van der Cruyssen, P.: Stable evaluation of generalized continued fractions. Siam J. Numer. Anal.18, 871–881 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boese, G. An a priori estimate for the truncation error of a continued fraction expansion to the Gaussian error function. Computing 29, 135–152 (1982). https://doi.org/10.1007/BF02249937

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02249937

AMS Subject Classifications

Key words

Navigation