Applied Scientific Research

, Volume 56, Issue 2–3, pp 113–143 | Cite as

Color-based image processing to measure local temperature distributions by wide-band liquid crystal thermography

  • M. Behle
  • K. Schulz
  • W. Leiner
  • M. Fiebig


This study presents a color-image-processing procedure for non-intrusive local temperature measurements by thermochromic liquid crystals (TLCs). The image evaluation software is completely independent of the color detection and acquisition hardware. This allows to use a wide variety of hardware solutions. An easy reproducible calibration of camera and light source is presented. The dependence of the detected hue values on intensity is investigated and further the hueversus temperature relation is studied.

Sprayable TLC formulations and TLC-coated polyester sheets are studied and compared with regard to their signal-to-noise ratio and the dependence of their hue values on illumination and viewing angle. Furthermore, a method to investigate the hue resolution is presented. The relation between the resolution of hue values and the illumination intensity and its influence on signal noise is discussed for the first time for TLC applications. Different techniques of signal noise reduction are implemented in the image processing system. Their effects on the signal noise level are discussed. As an example the two dimensional temperature distribution caused by wing-type vortex generators in a channel flow is given.

Key words

liquid crystal thermography color image processing hue-to-temperature—calibration 


Δ (H,S,I)

smallest change ofH,S orI for variation of R, G or B by one amplitude step


reproducibility error of temperature


usable calibrated temperature range, K


hue, saturation, intensity




number of averaged images


index of refraction of TLCs, ≅ 1.5

R, G, B

red, green, blue intensities


resolution ofH,S orI, bit


time, s


temperature, °C


spatial coordinates




luminance and chrominance signal

Greek symbols


angle, degree


heat conductance, W/(mK)


dominant wavelength, 10−6·m





calibration no.i




calibration no.j


object (model)


viewing- and illumination angle =0°C (perpendicular to the surface)




thermochromic liquid crystals


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moffat, R.J., Experimental heat transfer. In:IHTCC 9th International Heat Transfer Conference Vol. 1 (1990) pp. 187–205.Google Scholar
  2. 2.
    Cooper, T.E., Field, R.J. and Meyer, J.F., Liquid crystal thermography and its application to the study of convective heat transfer.Transactions of the ASME (1975) 442–450.Google Scholar
  3. 3.
    Hippensteele, S.A., Russell, L.M. and Stepka, F.S., Evaluation of a method for heat transfer measurements and thermal visualization using a composite of a heater element and liquid crystals.Transactions of the ASME 105 (1983) 184–189.Google Scholar
  4. 4.
    Bütefisch, K.-A. and Ahlbrecht, H., Quantitative Wärmeübergangsmessungen mit geheizten Flüssigkristallen. DGLR Bericht, 2D Meßtechnik, DGLR Workshop 88-04 (1988) 233–244.Google Scholar
  5. 5.
    Tiggelbeck, S., Experimentelle Untersuchungen and Kanalströmungen mit Einzel- und Doppelwirbelerzeuger-Reihen in kompakten Wärmetauschern. Dissertation, Ruhr-Universität Bochum (1990).Google Scholar
  6. 6.
    Kallweit, P.: Längswirbelerzeuger fur den Einsatz in Lamellenwärmetauschem. Dissertation, Ruhr-Universität Bochum (1986).Google Scholar
  7. 7.
    Valencia, A., Wärmeübergang und Druckverlust in Lamellen-Rohr-Wärmeübertragern mit Längswirbelerzeugern. Dissertation, Ruhr-Universität Bochum (1993).Google Scholar
  8. 8.
    Wang, Z., Ireland, P.T. and Jones, T.V., An advanced method of processing liquid crystal video signals from transient heat transfer experiments. ASME Paper No. 93-GT-282 (1993).Google Scholar
  9. 9.
    Behle, M., Entwicklung eines Verfahrens zur Auswertung instationärer Flüssigkristallthermographie-Aufnahmen mittels digitaler Bildverarbeitung. Diplomarbeit, Ruhr-Universität Bochum No. 93-16 (1993).Google Scholar
  10. 10.
    Akino, N., Kunugi, T., Ichimiya, K., Mitsushiro, K. and Ueda, M., Improved liquid-crystal thermometry excluding human color sensation.Transactions of the ASME 111 (1989).Google Scholar
  11. 11.
    Dabiri, D. and Gharib, M., Digital particle image thermometry: The method and implementation.Experiments in Fluids 11 (1991) 77–86.CrossRefGoogle Scholar
  12. 12.
    Camci, C., Kim, K. and Hippensteele, S.A., A new hue capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies.ASME Transactions, Journal of Turbomachinery 114 (1992) 765–775.Google Scholar
  13. 13.
    Frey, H., Digitale Bildverarbeitung in Farbräumen. Dissertation, TU München (1988).Google Scholar
  14. 14.
    Fergason, J.L., Liquid crystals in nondestructive testing.Applied Optics 7 (1968) 1729–1737.Google Scholar
  15. 15.
    Farina, D.J., Hacker, J.M., Moffat, R.J. and Eaton, J.K., Illuminant invariant calibration of thermochromic liquid crystals.Experimental Thermal and Fluid Science 9 (1994) 1–12.CrossRefGoogle Scholar
  16. 16.
    Herold, W. and Wiegel, D., Problems of the photographic documentation of liquid crystalline thermographs.Advances in Liquid Crystal Research and Applications (1980) 1255–1259.Google Scholar
  17. 17.
    Pratt, W.K.,Digital Image Processing. John Wiley & Sons Inc. (1991).Google Scholar
  18. 18.
    Goeser, M.O., Entwicklung eines Software-Programms zur Auswertung instationärer Farb-Flüssigkristallthermografie-Aufnahmen mittels digitaler Bildverarbeitung. Konstraktiver Entwurf, Ruhr-Universität Bochum No. 94–08 (in preparation).Google Scholar
  19. 19.
    Lohmberg, A., Entwicklung eines Aufbaus zur winkelabhängigen Kalibrierung von Oberflächentemperaturmessungen mittels Breitband-Flüssigkristallthermografie und IR-Thermografie. Konstraktiver Entwurf, Ruhr-Universität Bochum No. 94–03 (1994).Google Scholar
  20. 20.
    Wundes, K., Verbesserte Farbton-Temperatur-Kalibrierung von thermochromen Breitbandflüssigkristallen zur Erzielung einer hoheren Informationsdichte. Studienarbeit, Ruhr-Universität Bochum No. 94–08 (1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • M. Behle
    • 1
  • K. Schulz
    • 1
  • W. Leiner
    • 1
  • M. Fiebig
    • 1
  1. 1.Institut für Thermo- und FluiddynamikRuhr-Universität BochumBochumGermany

Personalised recommendations