Geometric & Functional Analysis GAFA

, Volume 6, Issue 3, pp 512–555 | Cite as

On the dimensions of spaces of siegel modular forms of weight one

  • J. -S. Li


Modular Form Siegel Modular Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AT]
    E. Artin, J. Tate, Class Field Theory, W.A. Benjamin, 1968.Google Scholar
  2. [BWa]
    A. Borel, N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Princeton University Press, Princeton, 1980.Google Scholar
  3. [C]
    W. Casselman, On the representations ofSL 2 (K) related to binary quadratic forms, Amer. Journal of Math. XCIV (1972), 810–834.Google Scholar
  4. [DWa]
    D. Degeorge, N. Wallach, Limit Formulas for Multiplicities inL 2 (Γ/G), Annals of Mathematics 107 (1978), 133–150.Google Scholar
  5. [DuHLi]
    W. Duke, R. Howe, J.-S. Li, Estimating Hecke eigenvalues of Siegel modular forms, Duke Math. Journal 67 (1992), 219–240.Google Scholar
  6. [E]
    R. Endres, Über die Darstellung singulärer Modulformen halbzahligen Gewichts durch Thetareihen, Math. Zeit. 193 (1986), 15–40.Google Scholar
  7. [F]
    E. Freitag, Singular Modular Forms and Theta Relations, Springer Lecture Notes in Math. 1487 (1991).Google Scholar
  8. [G]
    U. Görsch, Eine Invariante des Körpers der Siegelschen Modulfunktionen zur Hauptkongruenzgruppe, Diplomarbeit Universität Heidelberg, 1994.Google Scholar
  9. [H1]
    R. Howe, Notes on the oscillator representation, Preprint.Google Scholar
  10. [H2]
    R. Howe, ϑ series and invariant theory, in “Automorphic Forms, Representations, and L-functions”, Proc. Symp. Pure Math. 33, American Math. Soc. Providence (1979), 275–28.Google Scholar
  11. [H3]
    R. Howe, Automorphic forms of low rank, in “Non-commutative Harmonic Analysis”, Springer Lecture Notes in Math. 880 (1980), 211–248.Google Scholar
  12. [H4]
    R. Howe, On a notion of rank for unitary representations of classical groups, In “C.I.M.E. Summer School on Harmonic Analysis” (I. Cortona, ed.) (1980), 223–331.Google Scholar
  13. [H5]
    R. Howe, Small unitary representations of classical groups, in “Group Representations, Ergodic Theory, Operator Algebras and Math. Physics” (C. Moore, ed.), Springer-Verlag, (1986) 121–150.Google Scholar
  14. [JM]
    D. Johnson, J. Millson, Modular Lagrangians and the theta multiplier, Invent. Math. 100 (1990), 143–165.Google Scholar
  15. [K]
    M. Kneser, Strong approximation, in “Algebraic Groups and Discontinuous Subgroups” (A. Borel, G.D. Mostow, eds.), P.S.P.M. IX, (1966), 187–196.Google Scholar
  16. [Ku]
    S. Kudla, Splitting metaplectic covers of dual reductive paris, Israel Journal of Math. 87 (1994), 361–401.Google Scholar
  17. [L]
    S. Lang, Algebraic Number Theory, 2nd ed. Graduate Texts in Math., Springer-Verlag 110, 1994.Google Scholar
  18. [La]
    R.P. Langlands, The dimension of spaces of automorphic forms, Amer. J. Math. 85 (1963), 99–125.Google Scholar
  19. [Li1]
    J.-S. Li, Automorphic forms with degenerate Fourier coefficients, preprint.Google Scholar
  20. [Li2]
    J.-S. Li, Singular unitary representations of classical groups, Inven. Math. 97 (1989), 237–255.Google Scholar
  21. [LiM]
    J.-S. Li, J. Millson, On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group, Duke Math. Journal 71 (1993), 365–401.Google Scholar
  22. [LioV]
    G. Lion, M. Vergne, The Weil Representation, Maslov Index and Theta Series, Progress in Math. 6, Birkäuser, 1980.Google Scholar
  23. [MoViW]
    C. Moeglin, M.F. Vigneras, J.L. Waldspurger, Correspondence de Howe sur un corpsp-adique, Springer Lect. Notes in Math. 1291 (1987).Google Scholar
  24. [O]
    O.T. O'Meara, Introduction to Quadratic Forms, Ergebnisse der Mathematik 68, Springer-Verlag, 1972.Google Scholar
  25. [S]
    P. Sarnak, Diophantine problems and linear groups, in “Proc. Intl. Cong. Math.” (1991), 459–471.Google Scholar
  26. [SX]
    P. Sarnak, X. Xue, Bounds for multiplicities of automorphic spectrum, Duke Math. Journal 64 (1991), 207–227.Google Scholar
  27. [Sa]
    G. Savin, Limit multiplicities of cusp forms, Inven. Math. 95 (1989), 149–159.Google Scholar
  28. [Se]
    J.P. Serre, Corps Locaux, Hermann, Paris, 1968.Google Scholar
  29. [T]
    J. Tate, Fourier analysis in number fields and Hecke's zeta-functions, in “Algebraic Number Theory” (J.W.S. Cassels, A. Fröhlich, eds.), Academic Press, 1967, 305–347.Google Scholar
  30. [VoZ]
    D. Vogan, G. Zuckerman, Unitary representations with non-zero cohomology, Compositio Math. 53 (1984), 51–90.Google Scholar
  31. [We]
    A. Weil, Sur certains groupes d'operateurs unitaires, Acta Math. 111 (1964), 143–211.Google Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • J. -S. Li
    • 1
  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations