Geometric & Functional Analysis GAFA

, Volume 6, Issue 3, pp 512–555 | Cite as

On the dimensions of spaces of siegel modular forms of weight one

  • J. -S. Li
Article

Keywords

Modular Form Siegel Modular Form 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AT]
    E. Artin, J. Tate, Class Field Theory, W.A. Benjamin, 1968.Google Scholar
  2. [BWa]
    A. Borel, N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Princeton University Press, Princeton, 1980.Google Scholar
  3. [C]
    W. Casselman, On the representations ofSL 2 (K) related to binary quadratic forms, Amer. Journal of Math. XCIV (1972), 810–834.Google Scholar
  4. [DWa]
    D. Degeorge, N. Wallach, Limit Formulas for Multiplicities inL 2 (Γ/G), Annals of Mathematics 107 (1978), 133–150.Google Scholar
  5. [DuHLi]
    W. Duke, R. Howe, J.-S. Li, Estimating Hecke eigenvalues of Siegel modular forms, Duke Math. Journal 67 (1992), 219–240.Google Scholar
  6. [E]
    R. Endres, Über die Darstellung singulärer Modulformen halbzahligen Gewichts durch Thetareihen, Math. Zeit. 193 (1986), 15–40.Google Scholar
  7. [F]
    E. Freitag, Singular Modular Forms and Theta Relations, Springer Lecture Notes in Math. 1487 (1991).Google Scholar
  8. [G]
    U. Görsch, Eine Invariante des Körpers der Siegelschen Modulfunktionen zur Hauptkongruenzgruppe, Diplomarbeit Universität Heidelberg, 1994.Google Scholar
  9. [H1]
    R. Howe, Notes on the oscillator representation, Preprint.Google Scholar
  10. [H2]
    R. Howe, ϑ series and invariant theory, in “Automorphic Forms, Representations, and L-functions”, Proc. Symp. Pure Math. 33, American Math. Soc. Providence (1979), 275–28.Google Scholar
  11. [H3]
    R. Howe, Automorphic forms of low rank, in “Non-commutative Harmonic Analysis”, Springer Lecture Notes in Math. 880 (1980), 211–248.Google Scholar
  12. [H4]
    R. Howe, On a notion of rank for unitary representations of classical groups, In “C.I.M.E. Summer School on Harmonic Analysis” (I. Cortona, ed.) (1980), 223–331.Google Scholar
  13. [H5]
    R. Howe, Small unitary representations of classical groups, in “Group Representations, Ergodic Theory, Operator Algebras and Math. Physics” (C. Moore, ed.), Springer-Verlag, (1986) 121–150.Google Scholar
  14. [JM]
    D. Johnson, J. Millson, Modular Lagrangians and the theta multiplier, Invent. Math. 100 (1990), 143–165.Google Scholar
  15. [K]
    M. Kneser, Strong approximation, in “Algebraic Groups and Discontinuous Subgroups” (A. Borel, G.D. Mostow, eds.), P.S.P.M. IX, (1966), 187–196.Google Scholar
  16. [Ku]
    S. Kudla, Splitting metaplectic covers of dual reductive paris, Israel Journal of Math. 87 (1994), 361–401.Google Scholar
  17. [L]
    S. Lang, Algebraic Number Theory, 2nd ed. Graduate Texts in Math., Springer-Verlag 110, 1994.Google Scholar
  18. [La]
    R.P. Langlands, The dimension of spaces of automorphic forms, Amer. J. Math. 85 (1963), 99–125.Google Scholar
  19. [Li1]
    J.-S. Li, Automorphic forms with degenerate Fourier coefficients, preprint.Google Scholar
  20. [Li2]
    J.-S. Li, Singular unitary representations of classical groups, Inven. Math. 97 (1989), 237–255.Google Scholar
  21. [LiM]
    J.-S. Li, J. Millson, On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group, Duke Math. Journal 71 (1993), 365–401.Google Scholar
  22. [LioV]
    G. Lion, M. Vergne, The Weil Representation, Maslov Index and Theta Series, Progress in Math. 6, Birkäuser, 1980.Google Scholar
  23. [MoViW]
    C. Moeglin, M.F. Vigneras, J.L. Waldspurger, Correspondence de Howe sur un corpsp-adique, Springer Lect. Notes in Math. 1291 (1987).Google Scholar
  24. [O]
    O.T. O'Meara, Introduction to Quadratic Forms, Ergebnisse der Mathematik 68, Springer-Verlag, 1972.Google Scholar
  25. [S]
    P. Sarnak, Diophantine problems and linear groups, in “Proc. Intl. Cong. Math.” (1991), 459–471.Google Scholar
  26. [SX]
    P. Sarnak, X. Xue, Bounds for multiplicities of automorphic spectrum, Duke Math. Journal 64 (1991), 207–227.Google Scholar
  27. [Sa]
    G. Savin, Limit multiplicities of cusp forms, Inven. Math. 95 (1989), 149–159.Google Scholar
  28. [Se]
    J.P. Serre, Corps Locaux, Hermann, Paris, 1968.Google Scholar
  29. [T]
    J. Tate, Fourier analysis in number fields and Hecke's zeta-functions, in “Algebraic Number Theory” (J.W.S. Cassels, A. Fröhlich, eds.), Academic Press, 1967, 305–347.Google Scholar
  30. [VoZ]
    D. Vogan, G. Zuckerman, Unitary representations with non-zero cohomology, Compositio Math. 53 (1984), 51–90.Google Scholar
  31. [We]
    A. Weil, Sur certains groupes d'operateurs unitaires, Acta Math. 111 (1964), 143–211.Google Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • J. -S. Li
    • 1
  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations