Skip to main content
Log in

Iterative Toeplitz solvers with local quadratic convergence

Iterative Toeplitz Solver mit lokal quadratischer Konvergenz

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We study an iterative, locally quadratically convergent algorithm for solving Toeplitz systems of equations from [R. P. Brent, F. G. Gustavson and D. Y. Y. Yun. “Fast solution of Toeplitz systems of equations and computation of Padé approximations”,J. Algorithms, 1:259–295, 1980]. We introduce a new iterative algorithm that is locally quadratically convergent when used to solve symmetric positive definite Toeplitz systems. We present a set of numerical experiments on randomly generated symmetric positive definite Toeplitz matrices. In these experiments, our algorithm performed significantly better than the previously proposed algorithm.

Zusammenfassung

Wir studieren einen iterativen, lokal quadratisch konvergenten Algorithmus für die Lösung von Toeplitz-Systemen von Gleichungen von [R. P. Brent, F. G. Gustavson und D. Y. Y. Yun, “Fast solution of Toeplitz systems of equations and computation of Padé approximations”,J. Algorithms, 1:259–295, 1980]. Wir führen einen neuen iterativen Algorithmus ein, der lokal quadratisch konvergent ist, wenn er für positiv definite Toeplitz-Systeme gebraucht wird. Wir präsentieren eine Anzahl von numerischen Experimenten mit zufallsgenerierten, symmetrischen, positiv definiten Toeplitz-Matrizen. In diesen Experimenten ist unser Algorithmus entscheidend besser als der früher vorgeschlagene Algorithmus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunch, J. R.: Stability of methods for solving Toeplitz systems of equations. SIAM J. Sci. Stat. Comput.6, 349–364 (1985).

    Google Scholar 

  2. Blahut, R. E.: Fast algorithms for digital signal processing. Reading, MA: Addison-Wesley 1986.

    Google Scholar 

  3. Golub, G. H., Van Loan, C. F.: Matrix computations. Baltimore, MD: Johns Hopkins 1983.

    Google Scholar 

  4. Levinson, N.: The Wiener rms error criterion in filter design and prediction. J. Math. Phys.25, 261–278 (1947).

    Google Scholar 

  5. Trench, W. F.: An algorithm for the inversion of finite Toeplitz matrices. J. SIAM12, 512–522 (1964).

    Google Scholar 

  6. Cybenko, G., Berry, M.: Hyperbolic Housholder algorithm for factoring structured matrices. SIAM J. Matrix Anal. Appl.11, 499–520 (1990).

    Google Scholar 

  7. Ammar, G. S., Gragg, W. B.: Superfast solution of real positive definite Toeplitz systems.9, 61–76 (1988).

  8. Ammar, G. S., Gragg, W. B.: The generalized Schur algorithm for the superfast solution of Toeplitz systems. In: Pindor, M., Gilewicz, J., Siemaszko, W. (eds.) Rational approximation and its application in mathematics and physics. Springer 1986.

  9. Bitmead, R. R., Anderson, B. D. O.: Asymptotically fast solution of Toeplitz and related systems of linear equations. Linear Algebera Appl.34, 103–116 (1980).

    Google Scholar 

  10. Brent, R. P., Gustavson, F. G., Yun, D. Y. Y.: Fast solution of Toeplitz systems equations and computation of Padé approximations. J. Algorithms1, 259–295 (1980).

    Google Scholar 

  11. Strang, G.: A proposal for Toeplitz matrix calculations. Stud. Appl. Math.74, 171–176 (1986).

    Google Scholar 

  12. Rino, C.: The inversion of covariance matrices by finite Fourier transformations. IEEE Trans. Inform. Theory16, 230–232 (1970).

    Google Scholar 

  13. Chan, R. H.: The spectrum of a family of circulant preconditioned Toeplitz systems. SIAM J. Numer. Anal.26, 503–506 (1989).

    Google Scholar 

  14. Ku, T., Kuo, J.: Design and analysis of Toeplitz preconditioners. Proc. IEEE Int. Conf. Acoust. Speech Sig. Proc., pp. 1811–1814 (1990).

  15. Pan, V.: Fast and efficient parallel inversion of Toeplitz and block Toeplitz matrices. Operator Theory: Adv. Appl.40, 359–389 (1989).

    Google Scholar 

  16. Pan, V., Schrieber, R.: A fast, preconditioned conjugate gradient Toeplitz solver. Technical report 89.14, RIACS, NASA Ames Research Center, March 1989.

  17. Linzer, E.: Arithmetic complexity and numerical properties of algorithms involving Toeplitz matrices. PhD thesis, Columbia University, New York, NY, October 1990.

    Google Scholar 

  18. Strang, G.: Introduction to applied mathematics. Wellesley, MA: Wellesley-Cambridge 1986.

    Google Scholar 

  19. Gohberg, I. C., Fel'dman, I. A.: Convolution equations and projection methods for their solution. Providence, RI: American Mathematical Society 1974.

    Google Scholar 

  20. Iohvidov, I. S.: Hankel and Toeplitz matrices and forms. Boston, MA: Birkhauser 1982.

    Google Scholar 

  21. Cybenko, G.: Error analysis of some signal processing algorithms. Princeton, NJ: PhD thesis, Princeton University 1978.

    Google Scholar 

  22. Chan, R. H., Strang, G.: Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Stat. Comput.10, 104–119 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linzer, E., Vetterli, M. Iterative Toeplitz solvers with local quadratic convergence. Computing 49, 339–347 (1993). https://doi.org/10.1007/BF02248694

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02248694

AMS (MOS) Subject Classifications

Key words

Navigation