Skip to main content
Log in

Stratospheric-tropospheric exchange influenced by solar activity. Results of a 5 years study

Stratosphärisch-troposphärischer Austausch, beeinflußt durch solare Aktivität. Ergebnisse einer 5 jährigen Untersuchung

  • Published:
Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A Aims and scope Submit manuscript

Summary

Recordings of the Be7 and fallout in air and O3 obtained at a mountain observatory in 3 km altitude (Zugspitze) constitute the basis for a study of the question whether the frequency of intrusions of stratospheric air into the troposphere is influenced by solar events. The data cover the period from end of 1969 to February 1975.

An influx of stratospheric air passing the measuring station is indicated by a noticeable increase in concentration of the said 3 stratospheric materials. As a statistical method we are using superposed epoch analyses for studying the variations of the concentrations of the stratospheric materials. The following solar events are used as key days: a)H α flares with importance>1 and between 20°W and 20°E of heliographic length; b) passages of solar magnetic sector structure boundaries considering thereby their polarity.

Aside from the stratospheric materials 1. the following solar parameters are superposed: Sunspot number, calcium plage index, solar flux intensity (2695 MHz), and 2. the following geophysical parameters: Radio propagation index, neutron component of cosmic rays, geomagnetic index. Not at least the stratospheric residence time is taken into account.

Based on the results it can be established with certainty that the frequency of stratospheric intrusions into the troposphere is distinctly increased by solar flares and passages of solar magnetic sector structure boundaries. This correlation is not only significant during maximum solar activity but also during solar quiet.

Zusammenfassung

Registrierungen von Be7, Ozon und Fallout in der Luft an einem Bergobservatorium in 3 km Höhe (Zugspitze) bilden die Grundlage für eine Untersuchung der Frage, ob die Häufigkeit stratosphärischer Lufteinbrüche in die Troposphäre von solaren Ereignissen beeinflußt wird. Die Daten umfassen den Zeitraum von Ende 1969 bis Februar 1975. Ein Zufluß stratosphärischer Luft zu der Meßstation wird durch einen bemerkenswerten Anstieg der Konzentrationen der 3 genannten Spurenstoffe stratosphärischen Ursprungs signifikant angezeigt. Wir benutzen die Synchronisationsmethode un Stichtage um die Abhängigkeit der Konzentrationen der stratosphärischen Spurenstoffe von solaren Ereignissen zu studieren. Folgende Ereignisse werden als Stichtage verwendet: a)H α Eruptionen mit Stärke >1 und zwischen 20°W und 20°E heliographischer Länge; b) Passagen der Sektorengrenzen des solaren interplanetarischen Magnetfeldes, wobei seine Polarität berücksichtigt wird.

Abgesehen von den Konzentrationen der stratosphärischen Stoffe werden die folgenden Parameter synchronisiert: Calcium-Flecken-Index, Sonnenfleckenzahl, Neutronenkomponente der kosmischen Strahlung, geomagnetische Aktivität. Nicht zuletzt werden die stratosphärischen Verweilzeiten mit in Betracht gezogen.

Auf der Grundlage dieser so gewonnenen Ergebnisse konnte mit Sicherheit festgestellt werden, daß die Häufigkeit der Stratosphärenluft-Einbrüche nachH α-Eruptionen und Passagen von interplanetarischen magnetischen Sektorengrenzen deutlich ansteigt. Dieser Zusammenhang gilt nicht nur während maximaler solarer Aktivität, sondern auch während solarer Ruhe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reiter, R.: Increased Influx of Stratospheric Air Into the Lower Troposphere After SolarH α and X-Ray Flares. J. Geoph. Res.,78, 6167–6172 (1973).

    Google Scholar 

  2. Reiter, R.: Influx of Stratospheric Air Into the Lower Troposphere. Increased After SolarH α Flares, X-Ray Flares, and After Passages of Solar Magnetic Sector Structure Boundaries. Arch. Met. Geoph. Biokl., Ser. A,24, 147–162 (1975).

    Google Scholar 

  3. Reiter, R., R. Sládkovič, H.-J. Kanter, W. Carnuth, and K. Pötzl: Measurement of Airborne Radioactivity and Its Meteorological Application, Part IV. Annual Rep., Jan. 1975, AEC Doc. No. NYO-3425-10.

  4. Reiter, R., H.-J. Kanter, R. Sládkovič, and K. Pötzl: Measurement of Airborne Radioactivity and Its Meteorological Application, Part V. Annual Rep., March 1976, ERDA Doc. No. NYO-3425-12.

  5. Reiter, R., R. Sládkovič, K. Pötzl, H.-J. Kanter, and W. Carnuth:Measurement of Airborne Radioactivity and Its Meteorological Application, Part III. Annual Rep. 1971/1972, AEC Doc. No. NYO-3425-7.

  6. Reiter, R.: Solar-Terrestrial Relationships as Evidenced in Stratospheric-Tropospheric Exchange. Statistical Analysis of a 5 Year Recording Data Material. Wiss. Mitteilung Institut f. Atmosphärische Umweltforschung, Nr. 10 (1976).

  7. Reiter, Elmar R.: Atmospheric Transport Processes, 3, U. S. Atomic Energy Commission (1972).

  8. Reiter, R., R. Sládkovič, K. Pötzl, W. Carnuth, and H.-J. Kanter: Measurement of Airborne Radioactivity and Its Meteorological Application. Annual Rep. 1969/1970. AEC Doc. No. NYO-4061-2, U. S. Atomic Energy Commission Contract AT (30-1)-4061.

  9. Reiter, R., R. Sládkovič, K. Pötzl, and H.-J. Kanter: Measurement of Airborne Radioactivity and Its Meteorological Application, Part II. Annual Rep. 1970/1971 AEC Doc. No. NYO-4061-4.

  10. Reiter, R., R. Sládkovič, K. Pötzl, W. Carnuth, and H.-J. Kanter: Studies on the Influx of Stratospheric Air Into the Lower Troposphere Using Cosmic-Ray Produced Radionuclides and Fallout. Archiv Met. Geoph. Biokl., Ser, A,20, 211–246 (1971).

    Google Scholar 

  11. Reiter, R.: Influx of Stratospheric Air Masses into the Lower Troposphere after Solar Flares. Die Naturwissenschaften,60, 152–153 (1973).

    Article  Google Scholar 

  12. Reiter, R., R. Sládkovič, H.-J. Kanter, W. Carnuth, and K. Pötzl: Measurement of Airborne Radioactivity and Its Meteorological Application, Part IV. Annual Rep., Jan. 1975 AEC Doc. No. NYO-3425-10.

  13. Reiter, R.: Increased Frequency of Stratospheric Injections Into the Troposphere as Triggered by Solar Events. J. Atm. Terr. Phys. 1976 (In Print.)

  14. Reiter, E. R., W. Carnuth, H.-J. Kanter, K. Pötzl, R. Reiter, and R. Sládkovič: Measurements of Stratospheric Residence Time. Arch. Met. Geoph. Biokl., Ser. A,24, 41–51 (1975).

    Google Scholar 

  15. Svalgaard, L.: An Atlas of Interplanetary Sector Structure 1957–1974. Off. Naval Res. Contract N00014-67A-0112-0068. Nat. Aeronaut. Space Administ. Grant NGR 05-020-559, and Nat. Sci. Found. Grand DES74-19007, SUIPR Rep. No. 629 (1975).

  16. U. S. Department of Commerce, Solar Geophysical Data, Boulder, Colorado 1969–1973.

  17. Wilcox, J. M.: Solar Activity and the Weather. J. Atm. Terr. Phys.,37, 237–256 (1975).

    Article  Google Scholar 

  18. Reiter, E. R., and E. Bauer: The Natural Stratosphere of 1974 CIAP Monograph 1, Final Report 1975. Dep. Transport. Climatic Impact Assessment Program. Washington D. C. 20590, 2–125, 2–147.

    Google Scholar 

  19. Panofsky, H. A., and G. W. Brier: Some Applications of Statistics to Meteorology, Chapter VI. University Park, Pennsylvania: 1968.

    Google Scholar 

  20. Geisler, J. E., and R. E. Dickinson: The Five-Day Wave on a Sphere With Realistic Zonal Winds. J. Sci.,33, 632–641 (1975).

    Google Scholar 

  21. Rodgers, C. D.: Evidence for the Five-Day Wave in the Upper Stratosphere. J. Atmosph. Sci.,33, 710–711 (1976).

    Article  Google Scholar 

  22. McGuirk, J. P., E. R. Reiter, and A. M. Barbieri: On the Variability of Hemispheric Scale Energy Parameters. Envir. Res. Papers, Fort Collins, 1975.

  23. Mahlman, J. D.: Relation of the Stratospheric-Tropospheric Mass Exchange Mechanisms to Surface Radioactive Peaks. Arch. Met. Geoph. Biokl., Ser. A,15, 1–25 (1966).

    Google Scholar 

  24. Schuurmans, C. J. E.: The Influence of Solar Flares on the Tropospheric Circulation. Kon. Neth. Meteorol. Inst.,92, 1–22 (1969).

    Google Scholar 

  25. Roberts, W. O., and R. H. Olson: J. Atmosph. Sci.,30, 135 (1973).

    Article  Google Scholar 

  26. Svalgaard, L.: Solar Activity and the Weather. Proc. 7th ESLAB Sympos. Dordrecht: D. Reidel & Co. 1973.

    Google Scholar 

  27. Wilcox, J. M., P. H. Scherrer, L. Svalgaard, W. O. Roberts, and R. H. Olson: Solar Magnetic Sector Structure: Relation to Circulation of the Earth's Atmosphere. Science,180, 185–186 (1973).

    Google Scholar 

  28. Wilcox, J. M.: Solar Activity and the Weather. SUIPR Report No. 544 Office of Naval Research, Contract N00014-67-A-0112-0068, National Aeronautics and Space Administration Grant NGR 05-020-559 and National Science Foundation Grant GA-31138 (1973).

  29. Wilcox, J. M., L. Svalgaard, and P. H. Scherrer: On the Reality of a Sun-Weather Effect. J. Atmosph. Sci.,33, 1113–1116 (1976).

    Article  Google Scholar 

  30. King, J. W.: Sun-Weather Relationships. Aeronautics and Astronautics,13, 4, 10–19 (1975).

    Google Scholar 

  31. Reiter, R.: Further Evidence for Impact of Solar Flares on Potential Gradient and Air-Earth Current Characteristics at High Mountain Stations. PAGEOPH,86, 142–158 (1971).

    Article  Google Scholar 

  32. Reiter, R.: Solar-Terrestrial Relationships of an Atmospheric-Electrical and Meteorological Nature: New Findings. Rivista Italiana di Geofisica,XXII, 247 (1973).

    Google Scholar 

  33. Reiter, R.: Study to Verify Patterns of Atmospheric Potential Gradient and Air-Earth Current After Solar Flares Based Upon the Geographic Distribution of Storm Centers. Rivista Italiana di Geofisica,XXIII (1974).

  34. Reiter, R.: The Electric Potential of the Ionosphere as Controlled by the Solar Magnetic Sector Structure. Naturwiss.,63, 192 (1976).

    Article  Google Scholar 

  35. Bossolasco, M., et al.: Solar Flare Control of Thunderstorm Activity. Studi in onore di Giuseppina Aliverti, P. 213 (1972).

  36. Hines, C. O.: Comments on “A Test of an Apparent Respons ...”. J. Atmosph. Sci.,30, 739 (1973).

    Article  Google Scholar 

  37. Shapiro, R.: Solar Magnetic Sector Structure and Terrestrial Atmospheric Vorticity. J. Atmosph. Sci.,33, 865 (1976).

    Article  Google Scholar 

  38. Wilcox, J. M.: A Synoptic Approach to Sun-Weather Investigations. SUIPR Report No. 663, Off. Naval Res. Contract N00014-76-C-0207, Nat. Aeronaut. Space Administrat. Grant NGR 05-020-559, Nat. Sci. Found. Grants ATM 74-19007, DES 75-15664, and Max Fleischmann Found., May (1976).

  39. Wilcox, J. M.: Solar Structure and Terrestrial Weather. SUIPR Report No. 652, Off. Naval Res. Contract N00014-76-C-0207, nat. Aeronaut. Space Administrat. Grant NGR 05-020-559, and Nat. Sci. Found. Grants ATM 74-19007 and DES 75-15664, January (1976).

  40. Willis, D. M.: The Energetics of Sun-Weather Relationships: Magnetospheric Processes. J. Atm. Terr. Phys.,38, 685 (1976).

    Article  Google Scholar 

  41. Heath, D. F., et al.: Relation of the Observed Far Ultraviolet Solar Irradiance to the Solar Magnetic Sector Structure. Off. Naval Res. Contract N00014-67-A-0112-0068. SUIPR Report No. 638 (1975).

  42. Volland, H., and J. W. King: Tropospheric Planetary Waves Caused by Small Variations of the Solar Constant. Nature. (In print.)

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 14 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, R., Littfaß, M. Stratospheric-tropospheric exchange influenced by solar activity. Results of a 5 years study. Arch. Met. Geoph. Biokl. A. 26, 127–154 (1977). https://doi.org/10.1007/BF02247159

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02247159

Keywords

Navigation