Advertisement

On the dynamical consequence of the horizontal dimension of a typhoon

  • Hiroshi Matano
  • Mitsuru Sekioka
Article
  • 51 Downloads

Summary

The horizontal dimension of a typhoon is dynamically considered by applying Charney-Eliassen's model to the synoptic structure of a typhoon from the viewpoint of evolution, where a tropical cyclone is to evolve from a pre-typhoon depression system (a tropical vortex in the text meaning the mother body of a typhoon) into a typhoon by the spontaneous outbreak of a violent wind system (a typhoon vortex in the text meaning the virtual entity of a typhoon) in the inner region of the pre-typhoon system. A pre-typhoon system has the inner region of rotation of about 200 km radius while a violent wind system has that of about 50 km radius for each own system. It is concluded that the radius of the inner region of a pre-typhoon system is subject to the Coriolis parameter while that of a violent wind system to the relative vorticity of the pre-typhoon system, and that a system having the inner region of about 50 km radius can not break out in the field of the Coriolis parameter in tropical latitudes but only in the field of relative vorticity higher than the Coriolis parameter by one figure, supporting the evolutional hypothesis.

Keywords

Vortex Vorticity Cyclone Tropical Cyclone Relative Vorticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Über die dynamische Konsequenz der horizontalen Ausdehnung eines Taifuns

Zusammenfassung

Die horizontale Ausdehnung eines Taifuns wird in dynamischer Hinsicht auf Grund des von Charney und Eliassen ausgearbeiteten Modells der Entwicklung der synoptischen Struktur eines Taifuns untersucht, wonach eine tropische Zyklone sich aus einem Depressionssystem zu einem Taifun durch das spontane Aufkommen eines Systems heftiger Winde in der inneren Region des dem Taifun vorangehanden Systems entwickelt. Im Text wird mit „tropischer Wirbel” das Ausgangssystem des Taifuns und mit „Taifun-Wirbel” der vollentwickelte Taifun bezeichnet. Das dem eigentlichen Taifun vorausgehende Anfangssystem hat ein inneres Rotationsgebiet mit einem Radius von ungefähr 200 km, während das Starkwindsystem im entwickelten Taifun einen Radius von ungefähr 50 km hat. Es wird gefolgert, daß der Radius der inneren Region des Vortaifun-Systems der Wirkung des Coriolisparameters unterworfen ist, während der des Starkwindsystems von der relativen Vorticity des Vortaifun-Systems abhängt, ferner, daß ein System mit einer inneren Region von etwa 50 km Radius sich als Wirkung des Coriolisparameters in tropischen Breiten nicht entwickeln kann, sondern nur im Feld der relativen Vorticity, welches dort um eine Größenordnung größer ist als der Coriolisparameter, wodurch die Entwicklungshypothese gestütt wird.

Sur la conséquence dynamique de la dimension horizontale d'un typhon

Résumé

La dimension horizontale d'un typhon est considérée dynamiquement en appliquant le modèle de Charney-Eliassen à la structure synoptique d'un typhon au point de vue de l'évolution: un cyclone tropical est évolué d'un système de la dépression pré-typhonique (un vortex tropical dans le texte signifiant la matrice d'un typhon) un typhon par suite de la naissance spontanée d'un système du vent violent (un vortex typhonique dans le texte significant l'entité virtuelle d'un typhon) dans la région intérieure du système pré-typhonique. Un système pré-typhonique à la région intérieure de la rotation du rayon d'environ 200 km tandis qu'un système du vent violent à la région d'environ 50 km pour le système même respectivement. C'est conclu que le rayon de la région intérieure est sujet au paramètre de Coriolis en cas d'un système pré-typhonique, tandis que le rayon dans un système du vent violent à la vorticité relative du système pré-typhonique, et par surcroît qu'un système ayant la région intérieure du rayon de environ 50 km ne peut pas se former dans le champ du paramètre de Coriolis aux latitudes tropicales mais seulement dans le champ de la vorticité relative plus haute que le paramètre de Coriolis d'un chiffre, supportant l'hypothèse évolutionale.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoki, S.: On the Structure of Disastrous Typhoons Hitting the Japanese Islands. Proc. UNESCO Symp. on Typhoons, 1954, Tokyo, 61–77 (1955).Google Scholar
  2. 2.
    Charney, J. G., and A. Eliassen: On the Growth of the Hurricane Depression. J. Atmos. Sci.21, 68–75 (1964).Google Scholar
  3. 3.
    Jordan, C. L.: Mean Soundings for the West Indies Area. J. Meteor.15, 91–97 (1958).Google Scholar
  4. 4.
    Kasahara, A.: Supplementary Notes on the Formation and the Schematic Structure of Typhoons. J. Meteor. Soc. Japan32, 31–52 (1954).Google Scholar
  5. 5.
    Matano, H.: On the Role of the Lateral Mixing in the Cyclostrophic Flow Pattern in the Atmosphere. Ibid.34, 125–136 (1956).Google Scholar
  6. 6.
    Matano, H.: Synoptic Study of the Formation of the Severe Typhoon over the Tropical Ocean. Ibid.35, 117–127 (1957).Google Scholar
  7. 7.
    Matano, H.: A Statistical Study of the Formation of Severe Typhoon over the Tropical Ocean. Ibid.35, 249–253 (1957).Google Scholar
  8. 8.
    Matano, H.: On the Synoptic Structure of Hurricane Hazel, 1954, over the Eastern United States. Ibid.36, 23–31 (1958).Google Scholar
  9. 9.
    Matano, H.: A Synoptic Verification of the Development of a Tropical Cyclone into a Severe Typhoon. Ibid.36, 59–66 (1958).Google Scholar
  10. 10.
    Matano, H., and M. Sekioka: A Proposed Model of Life cycle of Tropical Cyclone. Geophys. Papers dedicated to Prof. K. Sassa, 229–233 (1963).Google Scholar
  11. 11.
    Matano, H., and M. Sekioka: On the Synoptic Structure of Typhoon Cora, 1969, as the Compound System of Tropical and Extratropical Cyclones. J. Meteor. Soc. Japan49, 282–295 (1971).Google Scholar
  12. 12.
    Namekawa, T., and S. Aoki: A View of the Structure of the “Muroto Typhoon”. Mem. Coll. Sci. Kyoto Imp. Univ., A,19, 79–91 (1936).Google Scholar
  13. 13.
    Ooyama, K.: Numerical Simulation of the Life Cycle of Tropical Cyclones. J. Atmos. Sci.26, 3–40 (1969).Google Scholar
  14. 14.
    Rosenthal, S. L.: A Circularly Symmetric Primitive Equation of Tropical Cyclone Development Containing an Explicit Water Vapor Cycle. Month. Weath. Rev.98, 643–663 (1970).Google Scholar
  15. 15.
    Schacht, E. J.: A Mean Hurricane Sounding for the Caribbean Area. Bull. Amer. Meteor. Soc.27, 324–327 (1946).Google Scholar
  16. 16.
    Sekioka, M.: Hypothesis on Complex of Tropical and Extratropical Cyclones for Typhoon in Middle Latitudes. I. Synoptic Structure of Typhoon Marie Passing over the Japan Sea. J. Meteor. Soc. Japan34, 276–287 (1956).Google Scholar
  17. 17.
    Sekioka, M.: A Hypothesis on Complex of Tropical and Extratropical Cyclones for Typhoon in Middle Latitudes. II. Synoptic Structure of Typhoons Louis Kezia and Jane Passing over the Japan Sea. Ibid.34, 336–345 (1956).Google Scholar
  18. 18.
    Sekioka, M.: A Hypothesis on Complex of Tropical and Extratropical Cyclones for Typhoon in Middle Latitudes. III. Examples of Typhoon not Accompanied by Extratropical Cyclone in Middle Latitudes. Ibid.35, 170–173 (1957).Google Scholar
  19. 19.
    Sekioka, M.: A Hypothesis on Complex of Tropical and Extratropical Cyclones for Typhoon in Middle Latitudes. IV. Analyses on Typhoons Invading into the Japan Sea during the Period from 1947 to 1956. Ibid.37, 111–114 (1959).Google Scholar
  20. 20.
    Sekioka, M.: A Hypothesis on Complex of Tropical and Extratropical Cyclones for Typhoon in Middle Latitudes. VI. A Synoptic Study on Formative Stage of Accompanying Extratropical Cyclone with Reference to Typhoon Babs. Mem. Osaka Univ. Liberal Arts and Education, B,8, 20–33 (1959).Google Scholar
  21. 21.
    Sekioka, M.: On the Distributions of Strong Wind and Heavy Rainfall within a Typhoon Area. Umi to Sora40, 19–24 (1965).Google Scholar
  22. 22.
    Sekioka, M.: On the Behavior of Cloud Patterns as Seen on Satellite Photographs in the Transformation of a Typhoon into an Extratropical Cyclone. J. Meteor. Soc. Japan48, 224–233 (1970).Google Scholar
  23. 23.
    Sundqvist, H.: Numerical Simulation of the Development of Tropical Cyclones with a Ten-Level Model. Part I. Tellus22, 359–390 (1970).Google Scholar
  24. 24.
    Sundqvist, H.: Numerical Simulation of the Development of Tropical Cyclones with a Ten-Level Model. Part II. Tellus22, 504–510 (1970).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Hiroshi Matano
    • 1
    • 2
  • Mitsuru Sekioka
    • 1
    • 2
  1. 1.Electronic Computation CenterJapan Meteorological AgencyTokyoJapan
  2. 2.Institute of MeteorologyThe Defense AcademyYokosuka, KanagawaJapan

Personalised recommendations