Skip to main content
Log in

EEG profile of intravenous zolpidem in healthy volunteers

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Zolpidem is an imidazopyridine which binds specifically to the ω1 receptor. Zolpidem demonstrated potent hypnotic activity at a dose of 10 mg. Pharmacodynamics and pharmacokinetics of zolpidem were studied after daytime administration in a randomised, double-blind, placebo-controlled, cross-over trial. Single doses of zolpidem (10 mg IV as a 3-min infusion and 20 mg orally) and placebo were firstly tested in 12 healthy young male volunteers. Two other doses (5 mg IV and orally) were then evaluated in 6 out of these 12 subjects. EEG (4 leads = Fp2-T4, Fp1-T3, T4-02 and T3-01), and Stanford Sleepiness Scale (SSS) were measured up to 5 h post-dosing. Blood samples were also collected up to 24 h. The time course of the hypnotic activity of zolpidem, assessed by the score obtained on SSS, showed a similar profile whatever the route or the dose administered: slightly earlier onset after IV but sedative scores were reached at 30 min and the effect peaked between 1 and 1.5 h and lasted 4 h in both conditions. The EEG profile of zolpidem was characterised by a decrease of alpha activity and an increase in delta and in beta activity. The effect on beta activity was marked within the first hour and then disappeared. The time course of delta and alpha activities indicated a rapid onset (10 min after IV, 30 min after oral route) and a duration of 3–4 h. The amplitude of these relative EEG changes and their duration were independent of the route of administration and the dose administered. AUC and Cmax increased proportionally to the administered dose and elimination half life (2 h), clearance and volume of distribution did not change according to the dose or the route of administration. Tmax was 1 h after the oral administration. The absolute bioavailability was about 70%. In conclusion, EEG induced changes and score of SSS were in good correlation with what has been observed with insomniac patients: zolpidem has a rapid onset and a short duration of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbilla S, Depoortere H, George P, Langer SZ (1985) Pharmacological profile of the imidazopyridine zolpidem at benzodiazepine receptors and electrocorticogram in rats. Arch of Pharmacol 330:248–251

    Google Scholar 

  • Arbilla S, Allen J, Wick A et al. (1986) High affinity (3H) zolpidem binding in the rat brain: an imidazopyridine with agonist properties at central benzodiazepine receptors. Eur J Pharmacol 130:257–263

    Google Scholar 

  • Balkin TJ, O'Donnell VM, Wesensten N, McCann U, Belenky G (1992) Comparison of the daytime sleep and performance effects of zolpidem versus triazolam. Psychopharmacology 107:83–86

    Google Scholar 

  • Benavides J, Peny B, Dubois A, Perrault G, Morel E (1988) In vivo interaction of zolpidem with central benzodiazepine (BZD) binding sites (as labeled by [3H]Ro 15-1788) in the mouse brain. Preferential affinity of zolpidem for the ω1 (BZD1) subtype. J Pharmacol Exp Ther 245:1033–1041

    Google Scholar 

  • Bensimon G, Foret J, Warot D, Lacomblez L, Thiercelin JF et al. (1990) Daytime wakefulness following a bedtime oral dose of zolpidem 20 mg, flunitrazepam 2 mg and placebo. Br J Clin Pharmacol 30:463–469

    Google Scholar 

  • Bianchetti G, Dubruc C, Thiercelin JP, Bercoff E et al. (1988) Clinical pharmacokinetics of zolpidem in various physiological and pathological conditions. In: Sauvanet JP, Langer SZ, Morselli PL (eds) Imidazopyridines in sleep disorders. Raven Press, New York, pp 155–163

    Google Scholar 

  • Biggio G, Concas A, Corda MG, Serra M (1989) Enhancement of GABAergic transmission by zolpidem an imidazopyridine with preferential affinity for type I benzodiazepine receptors. Eur J Pharmacol 161:173–180

    Google Scholar 

  • Blois R, Gaillard JM (1988) The effects of zolpidem on characteristics of normal human sleep. In: Sauvanet JP, Langer SZ, Morselli PL (eds) Imidazopyridines in sleep disorders. Raven Press, New York, pp 375–376

    Google Scholar 

  • Borbely AA, Mattmann P, Loepfe M, Strauch I, Lehmann D (1985) Effect of benzodiazepine hypnotics on all-night sleep EEG spectra. Hum Neurobiol 4:189–194

    Google Scholar 

  • Borbely AA, Youmbi-Balderer G, Jaggi-Schwarz K (1988) Zolpidem (10 mg and 20 mg): hypnotic action and residual effects after a single bedtime dose. In: Sauvanet JP, Langer SZ, Morselli PL (eds) Imidazopyridines in sleep disorders. Raven Press, New York, pp 205–210

    Google Scholar 

  • Breimer LTM, Hennis PJ, Burm AGL, Danhof M, Bovill JG et al. (1990) Quantification of the EEG effect of midazolam by aperiodic analysis in volunteers. Pharmacokinetic/pharmacodynamic modelling. Clin Pharmacokinet 18:245–253

    Google Scholar 

  • Brunner DP, Dijk DJ, Munch M, Borbely AA (1991) Effect of zolpidem on sleep and sleep EEG spectra in healthy young men. Psychopharmacology, 104:1–5

    Google Scholar 

  • Crevoisier C, Ziegler WH, Eckert M, Heizmann P (1983) Relationship between plasma concentration and effect of midazolam after oral and intravenous administration. Br J Clin Pharmacol 16:51S-61S

    Google Scholar 

  • Crowe McCann C, Quera-Salva MA, Boudet J, Frisk M, Barthouil P, Borderies P, Meyer P (1993) Effect of zolpidem during sleep on ventilation and cardiovascular variables in normal subjects. Fundam Clin Pharmacol 7:305–310

    Google Scholar 

  • Dennis T, Dubois A, Benavides J, Scatton B et al. (1988) Distribution of central ω1 (benzodiazepine1) and ω2 (benzodiazepine2) receptor subtypes in the monkey and human brain. An autoradiographic study with [3H] flunitrazepam and the ω1 selective ligand [3H] zolpidem. J Pharmacol Exp Ther 247:309–322

    Google Scholar 

  • Depoortere H, Decobert M, Honore L (1983) Drug effects on the EEG of various species of laboratory animals. Neuropsychiobiology 9:244–249

    Google Scholar 

  • Depoortere H, Decobert M, Granger P, Riou-Merle F (1984) EEG studies of some benzodiazepine (BZD) and non-BZS anxiolytichypnotic drugs. In: Court L, Trocherie S, Doucet J (eds) Le traitement du signal en électrophysiologie expérimentale et clinique du système nerveux central. CEA, Paris, pp 427–442

    Google Scholar 

  • Depoortere H, Zivkovic B, Lloyd DG, Sanger DJ, Perrault G (1986) Zolpidem, a novel nonbenzodiazepine hypnotic: neuropharmacoly and behaviourial effects. J Pharmacol Exp Ther 237:649–658

    Google Scholar 

  • Depoortere H, Decobert M, Riou-Merle F, Granger P (1988) EEG profile of zolpidem: in imidazopyridine hypnotic agent. In: Sauvanet JP, Langer SZ, Morselli PL (eds) Imidazopyridines on sleep disorders. Raven Press, New York, pp 81–96

    Google Scholar 

  • Ellinwood EH, Heatherly DG, Nikkaido AM, Bjornsson TD, Kilts G (1985) Comparative pharmacokinetics and pharmacodynamics of lorazepam, alprazolam and diazepam. Psychopharmacology 86:392–399

    Google Scholar 

  • Fairweather DB, Kerr JS, Hindmarch I (1992) The effects of acute and repeated doses of zolpidem on subjective sleep, psychomotor performance and cognitive function in elderly volunteers. Eur J Clin Pharmacol 43:597–601

    Google Scholar 

  • Fink M (1974) Cerebral electrometry. Quantitative EEG applied to human psychopharmacologiques. In: Dolce G, Kunkel M (eds) CEAN: Computerized EEG analysis. Fisher, Stuttgart, pp 271–288

    Google Scholar 

  • Fink M (1977) Quantitative EEG analysis and psychopharmacology. In: Remond A (ed) EEG informatics. A didactic review of methods and applications of EEG data processing. Elsevier, Amsterdam, pp 301–318

    Google Scholar 

  • Fink M (1978) EEG and psychopharmacology. Electroencephalogr Clin Neurophysiol 45:41–46

    Google Scholar 

  • Fink M (1980) An objective classification of psychoactive drugs. Prog Neurophysiol 45:41–56

    Google Scholar 

  • Fink M, Irwin P, Weinfeld RE, Scharz MA, Coney AH (1976) Blood levels and electroencephalographic effects of diazepam and bromazepam. Clin Pharmacol Therap 20:184–191

    Google Scholar 

  • Friedman H, Greenblatt DJ, Peters GR, Metzler CM, Charlton MD, Harmatz JS, Antal EJ, Sanborn EC, Francom SF (1992) Pharmacokinetics and pharmacodynamics of oral diazepam: effect of dose, plasma concentration, and time. Clin Pharmacol Ther 52:135–150

    Google Scholar 

  • Garrigou-Gadenne D, Burke JT, Durand A, Depoortere H, Thenot JP, Morselli PL (1989) Pharmacokinetics, brain distribution and pharmaco-electrocorticographic profile of zolpidem, a new hypnotic, in the rat. J Pharmacol Exp Ther 248[3]: 1283–1288

    Google Scholar 

  • Goldstein A, Aronow L, Kalman SM (1974) Principles of drug action, the basis of pharmacology, 2nd edn. Wiley, New York, pp 96–104

    Google Scholar 

  • Greenblatt DJ, Shety VH (1990) Benzodiazepine concentrations in brain directly reflect receptor occupancy: studies of diazepam, lorazepam and oxazepam. Psycopharmacology 102:373–378

    Google Scholar 

  • Greenblatt DJ, Ehrenberg BL, Gunderman J et al. (1989a) Pharmacokinetic and electroencephalographic study of intravenous diazepam, midazolam and placebo. Clin Pharmacol Ther 45:356–65

    Google Scholar 

  • Greenblatt DJ, Ehrenberg BL, Gunderman J et al. (1989b) Kinetic and dynamic study of intravenous lorazepam: comparison with intravenous diazepam. J Pharmacol Exp Ther 250:134–140

    Google Scholar 

  • Herrmann WM (1982) Development and critical evaluation of an objective procedure for the electroencephalographic classification of psychotropic drugs. In: Hermann W (ed) EEG in drug Research. Fisher, Stuttgart, pp 249–351

    Google Scholar 

  • Herrmann WM, Irrgang U (1983) An absolute must in clinicopharmacological research: pharmaco-electroencephalography, its possibilities and limitations. Pharmacopsychiatry 16:134–142

    Google Scholar 

  • Herrmann WM, Kubicki St, Wober W (1988) Zolpidem: a four week pilot polysomnographic study in patients with chronic sleep disturbances In: Sauvanet JP, Lander SZ, Morselli PL (eds) Imidazopyridines in sleep disorders. Raven Press, New York, pp 261–278

    Google Scholar 

  • Herrmann WM, Fichte K, Itil TM, Kubicki St (1979) Development of a classification rule for the electroencephalographic classification rule for four clinical therapeutic psychotropic drug classes with EEG power spectrum variables in human volunteers. Pharmacopsychiatry 12:20–34

    Google Scholar 

  • Hoddes E, Zarcone V, Smythe H, Philips R, Dement WC (1973) Stanford Sleepiness Scale. Quantification of sleepiness: a new approach. Psychophysiology 10:431–436

    Google Scholar 

  • Itil TM (1974) Quantitative pharmaco electroencephalography. In: Itil T (ed) Psychotropic drugs and the human EEG. Karger, Basel, pp 43–75

    Google Scholar 

  • Itil TM (1978) Effects of psychotropic drugs in qualitatively and quantitatively analyzed human EEG. In: Clark WG, del Guilduice J (eds) Principles of psychopharmacology, 2nd edn, Academic Press, New York, pp 261–277

    Google Scholar 

  • Itil TM, Huque M (1979) Computer EEG profiles of anxiolytics (quantitative EEG in the development of new anxiolytics). In: Fielding S, Lal H (eds) Industrial pharmacology-anxiolytics, Vol. 3, Futura, Mt Kisco, New York, pp 281–316

    Google Scholar 

  • Itil TM, Shapiro DM, Herrmann WM et al. (1979) HZI system for EEG parametrization and classification of psychotropic drugs. Pharmacopsychiatry 12:4–19

    Google Scholar 

  • Itil TM, Menon GN, Itil KZ (1982) Computer EEG drug data base in psychopharmacology and in drug development. Psychopharmacol Bull 18[4]: 165–172

    Google Scholar 

  • Itil TM, Shrivastava RK, Collins DM, Michael ST, Dayican G, Itil KZ (1983) A double-blind study comparing the efficacy and safety of a single bedtime dose of halazepam with clorazepate and placebo in anxious outpatients. Cur Therap Res 34[3]: 441–452

    Google Scholar 

  • Johnson LC, Spinweber CL, Seidel WF, Dement WC (1983) Sleep spindle and delta changes during chronic use of a short acting and a long acting benzodiazepine hypnotic. Electroencephalogr. Clin Neurophysiol 55:662–667

    Google Scholar 

  • Kanno O, Watanabe H, Ichikawa I, Iyo R, Suzuki M, Nakagome K, Takazawa S, Kazamatsuri H (1991) Effects of zolpidem and triazolam on all night sleep EEG of normal volunteers. Biol Psychiatry 29:305S

    Google Scholar 

  • Koopsmans R, Dingemanse J, Danhof M, Horsten GPM, Van Boxtel CJ (1988) Pharmacokinetic-pharmacodynamic modeling of midazolam effects on the human central nervous system. Clin Pharmacol 44:14–22

    Google Scholar 

  • Kryger MH, Steljes D, Pouliot Z, Neufeld H, Odynski T (1991) Subjective versus objective evaluation of hypnotic efficacy: experience with zolpidem. Sleep 14[5]: 399–407

    Google Scholar 

  • Lader M (1991) Rebound insomnia and newer hypnotics. Psychopharmacology 108:248–255

    Google Scholar 

  • Langer SZ, Arbilla S, Scatton B, Niddam R, Dubois A (1988) Receptors in the mechanism of action of zolpidem. In: Sauvanet JP, Langer SZ, Morselli PL (eds) Imidazopyridines in sleep disorders. Raven Press, New York, pp 55–70

    Google Scholar 

  • Langtry D, Benfield P (1990) Zolpidem. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs 40[2]: 291–313

    Google Scholar 

  • Lund R, Ruther E, Wober W, Hippins H (1988) Effects of zolpidem (10 and 20 mg), lormetazepam, triazolam and placebo on night sleep and residual effects during the day. Receptors involved in the mechanism of action of zolpidem. In: Sauvanet JP, Langer SZ, Morselli PL (eds) Imidazopyridines in sleep disorders, Raven Press, New York, pp 193–203

    Google Scholar 

  • Mandema JW, Danhof M (1992) Electroencephalogram effect measures and relationships between pharmacokinetics and pharmacodynamics of centrally acting drugs. Clin Pharmacokinet 23[3]:191–215

    Google Scholar 

  • Matejcek M (1979) Pharmaco-electroencephalography: the value of quantified EEG in psychopharmacology. Pharmacopsychiatry 12:126–136

    Google Scholar 

  • Mereu G, Carcangiu G, Concas A, Passino N, Biggio G (1990) Reduction of reticulate neuronal activity by zolpidem and alpidem, two imidazopyridines with high affinity for type I benzodiazepine receptors. Eur J Pharmacol 179[3]: 339–346

    Google Scholar 

  • Merlotti L, Roehrs T, Koshorek G, Zorick F, Lamphere J et al. (1989) The dose effects of zolpidem on the sleep of healthy normals. J Clin Psychopharmacol 9:9–14

    Google Scholar 

  • Monti JM (1989) Effect of zolpidem on sleep in insomniac patients. Eur J Clin Pharmacol 36:461–466

    Google Scholar 

  • Morselli PL, Larribaud J, Guillet Ph, Thiercelin JF, Barthelet G et al. (1988) Daytime residual effects of zolpidem: a review of available data. In: Sauvanet JP, Langer SZ, Morselli PL (eds) Imidazopyridines in sleep disorders. Raven Press, New York, pp 183–191

    Google Scholar 

  • Nicholson AN, Pascoe PA (1986) Hypnotic activity of an imidazopyridine (zolpidem). Br J Clin Pharmacol 21:205–211

    Google Scholar 

  • Niddam R, Dubois A, Scatton B, Arbilla S, Langer SZ (1987) Autoradiographic localization of [3H] zolpidem binding sites in the rats CNS: comparison with the distribution of [3H] flunitrazepam binding sites. J Neurochem 49:890–899

    Google Scholar 

  • Oswald I, Adam K (1988) A new look at short-acting hypnotics. In: Sauvanet JP, Langer SZ, Morselli PL (eds) Imidazopyridines in sleep disorders. Raven Press, New York, pp 351–361

    Google Scholar 

  • Palminteri R, Narbonne G (1988) Safety profile of zolpidem. In: Sauvanet JP, Langer SZ, Morselli PL (eds) Imidazopyridines in sleep disorders. Raven Press, New York, pp 351–361

    Google Scholar 

  • Patat A, Klein MJ, Hucher M, Granier J (1990) Computer-analysed EEG and psychometric assessment of two new non-benzodiazepine tranquillizers in healthy volunteers. Hum Psychopharmacol 5:123–131

    Google Scholar 

  • Pidoux B, Etevenon P, Campistron D, Peron-Magnan P, Verdeaux G, Deniker P (1983) Aspects topographiques des rythmes rapides médicamenteux en topo-encephalographie quantitative. Revue EEG Neurophysiol Clin 13:35–41

    Google Scholar 

  • Pritchett DB, Seeburg PH (1990) γ-Aminobutyric acidA receptor alpha-5 subunit creates novel type II benzodiazepine receptor pharmacology. J Neurochem 54:1802–1804

    Google Scholar 

  • Puia G, Vicini S, Seeburg PH, Costa E (1991) Influence of recombinant GABAA receptor subunit composition on the allosteric modulators of GABA-gated Cl-currents. Mol Pharmacol 39:691–696

    Google Scholar 

  • Saletu B (1987) The use EEG in drug profiling. In: Hindmarch I, Stonier PD (eds) Human Psychopharmacology: measures and methods, Vol. 1. Wiley, Chichester, pp 173–200

    Google Scholar 

  • Saletu B, Grunberg J, Linzmayer L (1983) Quantitative EEG and performance after administration of brotizolam to healthy volunteers. Br J Clin Pharmacol 16:33s-44s

    Google Scholar 

  • Saletu B, Grunberger J, Linzmayer L (1986) Pharmacokinetic and dynamic with a new anxiolytic imidazopyridine alpidem utilizing EEG and psychometry. Int Clin Psychopharmacol 1:145–164

    Google Scholar 

  • Sanger DJ, Zivkovic B (1987) Investigation of the development of tolerance of the actions of zolpidem and midazolam. Neuropharmacology 26:1513–1518

    Google Scholar 

  • Sanger DJ, Zivkovic B (1988) Further behaviourial evidence for the selective sedative action of zolpidem. Neuropharmacology 27:1125–1130

    Google Scholar 

  • Scharf MB, Mayleben DW, Kaffeman M, Krall R, Ochs R (1991) Dose response effects of zolpidem in normal geriatric subjects. J Clin Psychiatry 52[2]: 77683

    Google Scholar 

  • Streiberg B, Rohmel J, Herrmann WM, Kubicki S (1987) Rule for vigilance classification based on spontaneous EEG activity. Neuropsychiobiology 17:105–117

    Google Scholar 

  • Thenot JP, Herrmann P, Durand A, Burke JT et al. (1988) Pharmacokinetics and metabolism of zolpidem in various animal species and in humans. In: Sauvanet JP, Langer SZ, Morselli PL (eds) Imidazopyridines in sleep disorders. Raven Press, New York, pp 139–153

    Google Scholar 

  • Thiercelin JJ, Trocherie S, Thebault JJ, Larribaud J, Thibout E (1984) The contribution of quantitative electroencephalography to the study of a new hypnotic: zolpidem. In: Court L, Trocherie S, Doucet J (eds) Le traitement du signal en électrophysiologie expérimentale et clinique du système nerveux central. CEA, Paris, pp 581–586

    Google Scholar 

  • Trachsel L, Dijk DJ, Brunner DP, Klene C, Borbely AA (1990) Effect of zopiclone and midazolam on sleep and EEG spectra in a phase-advanced sleep schedule. Neuropsychopharmacology 3:11–18

    Google Scholar 

  • Vogel G, Scharf M, Walsh J, Roth T (1989) Effects of chronically administered zolpidem on the sleep of healthy insomniacs. Sleep Res 18:80

    Google Scholar 

  • Wheatley D (1988) Zolpidem and placebo: a study in general practice in patients suffering from insomnia. In: Sauvanet JP, Lander SZ, Morselli PL (eds) Imidazopyridines in sleep disorders. Raven Press, New York, pp 305–316

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patat, A., Trocherie, S., Thebault, J.J. et al. EEG profile of intravenous zolpidem in healthy volunteers. Psychopharmacology 114, 138–146 (1994). https://doi.org/10.1007/BF02245455

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245455

Key words

Navigation